【题目】设集合A={x|﹣1≤x≤2},B={x|x2﹣x+(m﹣m2)<0}.
(1)当m< 时,化简集合B;
(2)p:x∈A,命题q:x∈B,且命题p是命题q的必要不充分条件,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC=2.
(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在点G满足BF⊥平面AEG?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为 ( t为参数).以原点为极点,x轴正半轴为极轴 建立极坐标系,圆C的方程为 ρ=2 sinθ.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)若点P的直角坐标为(1,0),圆C与直线l交于A,B两点,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)在区间A上,对a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[ ,e]上是“三角形函数”,则实数m的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让学生更多的了解“数学史”知识,梁才学校高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组 | 组中值 | 频数 | 频率 |
(i) | (分数) | (Gi) | (人数) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)为鼓励更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在
参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)= x2﹣kx;
(1)设k=m+ (m>0),若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求实数m的取值范围;
(2)设M(x)=f(x)﹣g(x),若函数M(x)存在两个零点x1 , x2(x1>x2),且满足2x0=x1+x2 , 问:函数M(x)在(x0 , M(x0))处的切线能否平行于直线y=1,若能,求出该切线方程,若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com