精英家教网 > 高中数学 > 题目详情
设全集U=R,且A={x|x<-1或x>2},B={y|y=x2+a},若∁uA⊆B,求实数a的取值范围.
考点:交、并、补集的混合运算
专题:集合
分析:由全集U及A,求出A的补集,根据A补集为B的子集,确定出a的范围即可.
解答: 解:∵全集U=R,且A={x|x<-1或x>2},
∴∁UA={x|-1≤x≤2},
∵B={y|y=x2+a}={y|y≥a},∁UA⊆B,
∴a≤-1,
则a的范围为{a|a≤-1}.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-lnx-1.
(Ⅰ)求函数f(x)在x=2处的切线方程;
(Ⅱ)若x∈(0,+∞)时,f(x)≥ax-2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个半径为15cm的圆中,一扇形的弧所对的圆周角为60°,求其周长与面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若函数f(aπx)的图象中至少有一个最高点和一个最低点同时在圆x2+y2=3的内部,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD是等腰梯形,且AB∥CD,O是AB中点,PO⊥平面ABCD,PO=CD=DA=
1
2
AB=4,M是PA中点.
(1)证明:平面PBC∥平面ODM;
(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

(1)化简f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log a1b1=log a2b2=…=log anbn,求证log a1a2an(b1b2…bn)=log a1b1=log a2b2=…=log anbn

查看答案和解析>>

科目:高中数学 来源: 题型:

求不等式(x-2)(1-3x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,右焦点F(1,0).设O为坐标原点,M是直线l:x=2上的动点,过点F作OM的垂线与以OM为直径的圆D交于P、Q两点,则PO=
 

查看答案和解析>>

同步练习册答案