精英家教网 > 高中数学 > 题目详情

(本小题13分)已知函数
(1)在右图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.
(3) 求的最小值。

(1)见解析;(2))函数的单调递增区间为[-1,0]和[2,5]
(3)当x=2时,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知,设函数= ax2 +x-3alnx.
(I)求函数的单调区间;
(II)当a=-1时,证明:≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数最大值和最小值;
(2)若方程有两根,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)病人按规定的剂量服用某药物,测得服药后,每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.
(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数,方程的两根满足
(1)求实数的取值范围;
(2)试比较的大小.并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=logaxg(x)=2loga(2xt-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).

查看答案和解析>>

同步练习册答案