精英家教网 > 高中数学 > 题目详情
11.等比数列{an}中,q=2,a2+a5+…+a98=22,则数列{an}的前99项的和S99=(  )
A.100B.88C.77D.68

分析 根据利用等比数列通项公式及(a1+a4+a7+…+a97)q2=(a2+a5+a6+…+a98)q=a3+a6+a9+…a99求得答案.

解答 解:因为等比数列{an}中,q=2,a2+a5+…+a98=22,
设a3+a6+a9+…+a99=x则
a1+a4+a7+…+a97=$\frac{x}{4}$
a2+a5+a8+…+a98=$\frac{x}{2}$=22,
则x=44,
所以a1+a4+a7+…+a97=11,a3+a6+a9+…+a99=44.
所以S99=(a1+a4+a7+…+a97)+(a2+a5+a6+…+a98)+(a3+a6+a9+…+a99)=44+22+11=77
故选:C.

点评 本题主要考查了等比数列的前n项和,解题的关键是发现a1+a4+a7+…+a97与a2+a5+a6+…+a98和a3+a6+a9+…a99的联系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=a|2x-1|(a>0且a≠1),满足f(2)=2$\sqrt{2}$,则f(x)的单调递减区间是(  )
A.[0,+∞)B.(-∞,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}是公比大于1的等比数列,Sn是{an}的前n项和.若S3=7,且a1+3,3a2,a3+4构成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)令${{b}_{n}}=\frac{1}{({{log}_{2}}{{a}_{n}}+1)({{log}_{2}}{{a}_{n+1}}+1)}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax3+bx2+cx+1(a≠0),下列结论中错误的是(  )
A.?x0∈R,使得f(x0)=0
B.函数y=f(x)的图象一定是中心对称图形
C.若x0是函数f(x)的极值点,则f'(x0)=0
D.若x0是函数f(x)的极小值点,则函数f(x)在区间(-∞,x0)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)(x∈R)满足f(-x)=-f(x+4),若函数y=$\frac{1}{2-x}$与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则$\sum_{i=1}^m$(xi+yi)=(  )
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若目标函数z=ax+by(a>0,b>0)满足约束条件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$且最大值为40,则$\frac{5}{a}$+$\frac{1}{b}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{e^x}$,对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f'(x1)≤g(x2)成立,则实数a的取值范围是$(-∞,\frac{{\sqrt{e}}}{e}-8]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在正方体ABCD-A1B1C1D1中,AB=2,平面α经过B1D1,直线AC1∥α,则平面α截该正方体所得截面的面积为(  )
A.2$\sqrt{3}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{\sqrt{34}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=xex,则曲线y=f(x)在点(0,0)处的切线方程为y=x.

查看答案和解析>>

同步练习册答案