精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=
1
3
n(n+1)(n+2),试求数列{
1
an
}
的前n项和.
由Sn=
1
3
n(n+1)(n+2),
当n=1时,a1=S1=2.
当n≥2时,an=Sn-Sn-1=
1
3
n(n+1)(n+2)-
1
3
(n-1)n(n+1)
=n(n+1).
当n=1时上式成立,所以an=n(n+1).
则数列{
1
an
}
的前n项和为:
1
a1
+
1
a2
+…+
1
an
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案