精英家教网 > 高中数学 > 题目详情
1.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.
(Ⅰ)求证:PD∥平面OCM;
(Ⅱ)若AP与平面PBD所成的角为60°,求线段PB的长.

分析 (Ⅰ)连接BD交OC与N,连接MN.证明MN∥PD.然后证明PD∥平面OCM.
(Ⅱ)通过计算证明AB⊥BD.AB⊥PD.推出AB⊥平面BDP,说明∠APB为AP与平面PBD所成的角,然后求解即可.

解答 (本小题满分15分)
解:(Ⅰ)连接BD交OC与N,连接MN.
因为O为AD的中点,AD=2,
所以OA=OD=1=BC.
又因为AD∥BC,
所以四边形OBCD为平行四边形,…(2分)
所以N为BD的中点,因为M为PB的中点,
所以MN∥PD.…(4分)
又因为MN?平面OCM,PD?平面OCM,
所以PD∥平面OCM.…(6分)
(Ⅱ)由四边形OBCD为平行四边形,知OB=CD=1,
所以△AOB为等边三角形,所以∠A=60°,…(8分)
所以$BD=\sqrt{1+4-2×1×2×\frac{1}{2}}=\sqrt{3}$,即AB2+BD2=AD2,即AB⊥BD.
因为DP⊥平面ABP,所以AB⊥PD.
又因为BD∩PD=D,所以AB⊥平面BDP,…(11分)
所以∠APB为AP与平面PBD所成的角,即∠APB=60°,…(13分)
所以$PB=\frac{{\sqrt{3}}}{3}$. …(15分)

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图频率分布直方图.观察图形的信息,回答下列问题:
(1)求出物理成绩低于50分的学生人数;
(2)估计这次考试的平均分m与中位数n的值;
(3)设计一程序框图,根据输入的60名学生物理成绩输出这次考试的及格率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)为周期函数,且周期为4,若在区间[-2,2]上,f(x)=$\left\{\begin{array}{l}{{2}^{x}+2m,-2≤x≤0}\\{lo{g}_{2}x-m,0<x≤2}\end{array}\right.$,则f(2017m)=(  )
A.-$\frac{9}{4}$B.-$\frac{5}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下函数中在区间(0,+∞)上单调递增的函数是(  )
A.y=|x|+1B.y=$\frac{1}{x}$C.y=-x2+1D.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l1:x-y-1=0,直线l2:x+y-3=0
(I)求直线l1与直线l2的交点P的坐标;
(II)过点P的直线与x轴的非负半轴交于点A,与y轴交于点B,且S△AOB=4(O为坐标原点),求直线AB的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,求m的范围m≤-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.抛物线x=4y2的焦点坐标是(  )
A.(0,1)B.(0,-1)C.$({-\frac{1}{16},0})$D.$({\frac{1}{16},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(\frac{x}{2})=-\frac{1}{8}{x^{\;}}+\frac{m}{4}{x^2}-m,g(x)=-\frac{1}{2}{x^3}+m{x^2}+(a+1)x+2xcosx-m$.
(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x2,f(x2))处的切线都经过点(2,t),
求证:t=3m-8或$t=-\frac{1}{27}{m^3}+\frac{2}{3}{m^2}-m$;
(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=\sqrt{{2^{a{x^2}-2ax-1}}-1}$的定义域为R,则实数a的取值范围是∅.

查看答案和解析>>

同步练习册答案