精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线的焦点为,过点作直线与抛物线交于两点,当直线轴垂直时长为.

1)求抛物线的方程;

2)若的面积相等,求直线的方程.

【答案】1;(2.

【解析】

1)由题意可知点在抛物线上,将该点坐标代入抛物线的方程,求得的值,进而可求得抛物线的方程;

2)由题意得出,可得知直线的斜率不为零,可设直线的方程为,将该直线方程与抛物线方程连理,列出韦达定理,由题意得出,代入韦达定理后可求得的值,进而可求得直线的方程.

1)当直线轴垂直时的长为

,取,所以,解得

所以抛物线的方程为

2)由题意知

,所以

时,直线与抛物线不存在两个交点,所以

故设直线的方程为,代入抛物线方程得

所以

可得,解得.

所以,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班级有60名学生,学号分别为160,其中男生35人,女生25人.为了了解学生的体质情况,甲、乙两人对全班最近一次体育测试的成绩分别进行了随机抽样.其中一人用的是系统抽样,另一人用的是分层抽样,他们得到各12人的样本数据如下所示,并规定体育成绩大于或等于80人为优秀.

甲抽取的样本数据:

学号

4

9

14

19

24

29

34

39

44

49

54

59

性别

体育成绩

90

80

75

80

83

85

75

80

70

80

83

70

女抽取的样本数据:

学号

1

8

10

20

23

28

33

35

43

48

52

57

性别

体育成绩

95

85

85

80

70

80

80

65

70

60

70

80

(Ⅰ)在乙抽取的样本中任取4人,记这4人中体育成绩优秀的学生人数为,求的分布列和数学期望;

(Ⅱ)请你根据乙抽取的样本数据,判断是否有95%的把握认为体育成绩是否为优秀和性别有关;

(Ⅲ)判断甲、乙各用的何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优,说明理由.

附:

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值:

若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制);

若这两条棱所在的直线平行,则

若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制).

(1)求的值;

(2)求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,均为等腰直角三角形,且上一点,且平面.

1)求证:

2)过作一平面分别交,若四边形为平行四边形,求多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,PCBC,点EPC的中点,且平面PBC⊥平面ABCD.求证:

1)求证:PA∥平面BDE

2)求证:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距进行统计,作成如图所示的频率分布直方图.

1)求频率分布直方图中的值和身高在内的人数;

2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,斜率为的直线x轴交于点A,与y轴交于点,过x 轴的平行线,交于点,过y轴的平行线,交于点,再过x轴的平行线交于点,这样依次得线段,记为点的横坐标,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆C 上一点,点P到椭圆C的两个焦点的距离之和为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设AB是椭圆C上异于点P的两点,直线PA与直线交于点M

是否存在点A,使得?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)己知函数有两个极值点

①比较的大小;

②若函数在区间上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案