【题目】已知直线
,斜率为
的直线
与x轴交于点A,与y轴交于点
,过
作x 轴的平行线,交
于点
,过
作y轴的平行线,交
于点
,再过
作x轴的平行线交
于点
,…,这样依次得线段
、
、
、
、…、
、
,记
为点
的横坐标,则
__________.
![]()
【答案】![]()
【解析】
先由题设条件得出点
的坐标,根据它们之间的关系求出点
的坐标,然后利用数列极限的运算性质求出
.
解:∵斜率为
的直线
与x轴交于点A,与y轴交于点
,直线
,
∴A1(a,a).
∵A1B0∥x轴,∴B1(a,aq+a),A2(aq+a,aq+a).
∵B1A2∥x轴,∴B2(aq+a,aq2+aq+a).
同理可得:A3(aq2+aq+a,aq2+aq+a),
B3(aq2+aq+a,aq3+aq2+aq+a),…,
Bn(aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a,aqn+aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a),
∵xn为点Bn的横坐标,
∴xn=aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a.
故xn是首项为a,公比为q(0<q<1)的等比数列的前n项的和,
由数列极限的运算性质得:
.
故答案为:
.
![]()
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,如图,
分别交
轴正半轴于点
.射线
分别交
于点
,动点
满足直线
与
轴垂直,直线
与
轴垂直.
![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
交曲线
与点
,射线
与点
,且交曲线
于点
.问:
的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某外国语学校举行的
(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为
,且成绩分布在
,分数在
以上(含
)的同学获奖.按女生、男生用分层抽样的方法抽取
人的成绩作为样本,得到成绩的频率分布直方图如图所示.
![]()
(Ⅰ)求
的值,并计算所抽取样本的平均值
(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)填写下面的
列联表,并判断在犯错误的概率不超过
的前提下能否认为“获奖与女生、男生有关”.
女生 | 男生 | 总计 | |
获奖 |
| ||
不获奖 | |||
总计 |
| ||
附表及公式:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,A、B分别为椭圆
的上、下顶点,若动直线l过点
,且与椭圆
相交于C、D两个不同点(直线l与y轴不重合,且C、D两点在y轴右侧,C在D的上方),直线AD与BC相交于点Q.
![]()
(1)设
的两焦点为
、
,求
的值;
(2)若
,且
,求点Q的横坐标;
(3)是否存在这样的点P,使得点Q的纵坐标恒为
?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令
为某一家庭所生的女孩数,
为此家庭所生的男孩数.
(1)求
,
的分布列,并比较它们数学期望的大小;
(2)求概率
,其中
为
的方差.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com