精英家教网 > 高中数学 > 题目详情

【题目】各项均为正数的等比数列满足 .

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求数列的前项和.

【答案】(Ⅰ);(Ⅱ)

【解析】试题分析:1通过 及数列的各项均为正数,可得 ,计算即可;(2)时;利用分组求和与等比数列求和, 通过 ,可得 ,利用错位相减法及等比数列的求和公式计算即可.

试题解析:(Ⅰ)设等比数列的公比为,由

,得

数列为正项数列,

代入①,得 .

(Ⅱ)由(Ⅰ)知当时,

此时

时, .

时,

.

综上可知,数列的前项和

【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②

;③

;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx﹣2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)将函数f(x)的图象向左平移 个单位,得到函数g(x)的图象.在△ABC中,角A,B,C的对边分别为a,b,c,若g( )=1,a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合.若曲线的参数方程为为参数),直线的极坐标方程为.

(1)将曲线的参数方程化为极坐标方程;

(2)由直线上一点向曲线引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体中, 均为边长为2的正方形, 为等腰直角三角形, ,且平面平面,平面平面.

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中3个红球、2个白球、3个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为(
A.
B.2+
C.4+
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且 的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,求数列的通项公式;

(Ⅲ)在(Ⅱ)的条件下,设,问是否存在实数使得数列)是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若是函数的一个极值点, 和1是的两个零点,且,求的值;

(2)若,且的两个极值点,求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

第1组

[160,165)

5

0.050

第2组

[165,170)

n

0.350

第3组

[170,175)

30

p

第4组

[175,180)

20

0.200

第5组

[180,185]

10

0.100

合计

100

1.000


(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

同步练习册答案