精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2 sinxcosx﹣2cos2x+1.
(1)求函数f(x)的最小正周期;
(2)将函数f(x)的图象向左平移 个单位,得到函数g(x)的图象.在△ABC中,角A,B,C的对边分别为a,b,c,若g( )=1,a=2,b+c=4,求△ABC的面积.

【答案】
(1)解: f(x)=2 sinxcosx﹣2cos2x+1

= sin2x﹣cos2x

=2sin(2x﹣

所以,函数f(x)的最小正周期为T= =π.


(2)解:g(x)=f(x+

=2sin[2(x+ )﹣ ]=2sin(2x+ )=2cos2x

g( )=2cosA=1,

∴cosA=

∵0<A<π,

∴A=

在△ABC中,利用余弦定理,得

a2=b2+c2﹣2bccosA,

∴4=b2+c2﹣2bc =(b+c)2﹣2bc,

∴bc=4,

∴SABC= bcsinA= ×4× =


【解析】(1)首先,利用降幂公式、辅助角公式化简函数解析式,然后,根据三角函数的周期公式进行求解即可;(2)借助于三角函数的图象变换,得到函数g(x)的解析式,然后,结合余弦定理,确定其三角形的面积.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,且AD=4DC.
(Ⅰ)求BD的长;
(Ⅱ)求sin∠CBD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:
(1) >1;
(2)x2﹣ax﹣2a2<0 (a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.
(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,在四棱锥平面.

(I)求异面直线所成角的余弦值

(II)求证:平面

(II)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的等比数列满足 .

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求数列的前项和.

查看答案和解析>>

同步练习册答案