精英家教网 > 高中数学 > 题目详情

对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.

给出下列三个命题:

(1)若点C在线段AB上,则||AC||+||CB||=||AB||;

(2)在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2

(3)在△ABC中,||AC||+||CB||>||AB||.

其中说法正确的个数为

[  ]

A.0

B.1

C.2

D.3

答案:B
解析:

  在坐标平面上取几个具体的符合条件的点并写出其坐标,进行观察、比较、分析、综合,不难确定命题的真假.

  不妨取直角坐标系中x非负半轴上的三点A(0,0),C(c,0),B(b,0),0<c<b,

  由题设,可得||AC||+||CB||=c+(b-c)=b=||AB||;另外在△ABC中,若∠C=90°,取C(0,0),B(1,0),A(0,2),则||AC||=2,||BC||=1,||AB||=3,但||AC||2+||CB||2≠||AB||2

  且||AC||+||CB||=||AB||.所以(2)与(3)都不正确.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|.给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,则||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=|x1-x2|+|y1-y2|.给出下列三个命题:
①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知θ∈[0,
π
3
]

(Ⅰ)试用θ表示
BC
的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:||AB||=|x2-x1|+|y2-y1|给出下列三个命题:
①若点C在线段AB上,则||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||
其中真命题为
写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源:2010年福建省高二第二学期半期考试数学(理科)试题 题型:选择题

对于直角坐标平面内的任意两点A(x,y)、B(xy),定义它们之间的一种“距离”:

AB‖=︱xx︱+︱yy︱。给出下列三个命题:

①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;

②在△ABC中,若∠C=90°,则‖AC+‖CB=‖AB

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命题的个数为(    )

A.1个                           B.2个                    C.3个                 D.4个

 

查看答案和解析>>

同步练习册答案