精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中点.

(1)求证:AE∥平面PBC;
(2)若直线AE与直线BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

【答案】
(1)证明:取PC中点F,连结EF、BF,

∴△PCD中,EF ,AB

∴EF AB,

∴四边形ABFE为平行四边形,

∵AE∥BF,AE平面PBC,BF平面PBC,

∴AE∥平面PBC.


(2)解:AE与直线BC所成角为

∴BP= ,∴PA=

延长BA一倍到H,连结DH,再作HG⊥BP,连结DG,

则∠DGH是二面角D﹣PB﹣A的平面角,

DH=1,FG× ,HG=

∴tan∠DGH=

∴cos∠DGH=

∴二面角D﹣PB﹣A平面角的余弦值为


【解析】(1)取PC中点F,连结EF、BF,推导出四边形ABFE为平行四边形,从而AE∥BF,由此能证明AE∥平面PBC.(2)AE与直线BC所成角为 ,延长BA一倍到H,连结DH,再作HG⊥BP,连结DG,∠DGH是二面角D﹣PB﹣A的平面角,由此能求出二面角D﹣PB﹣A平面角的余弦值.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成 六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试成绩的中位数;

(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

(1)三名女生不能相邻,有多少种不同的站法?

(2)四名男生相邻有多少种不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)经过点P(﹣2,0)与点(1,1).
(1)求椭圆的方程;
(2)过P点作两条互相垂直的直线PA,PB,交椭圆于A,B.
①证明直线AB经过定点;
②求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,命题:实数满足不等式;命题:实数满足不等式,若的充分不必要条件,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移 个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在 上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)解不等式:

(2)有4名男生和3名女生

i)选出4人去参加座谈会,如果3人中必须既有男生又有女生,有多少种选法?

ii)7人排成一排,甲乙二人之间恰好有2个人,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列两个命题: 函数在[2,+∞)单调递增; 关于的不等式的解集为.若为真命题, 为假命题,求的取值范围.

查看答案和解析>>

同步练习册答案