精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的前n项和${S_n}={n^2}-2n$,那么它的通项公式为an2n-3.

分析 数列{an}的前n项和${S_n}={n^2}-2n$,n=1时,a1=S1.n≥2时,an=Sn-Sn-1,即可得出.

解答 解:∵数列{an}的前n项和${S_n}={n^2}-2n$,
∴n=1时,a1=S1=-1.
n≥2时,an=Sn-Sn-1=n2-2n-[(n-1)2-2(n-1)]=2n-3.n=1时也成立.
∴an=2n-3.
故答案为:2n-3.

点评 本题考查了数列递推关系、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)定义在(0,+∞)上的单调函数,且满足条件f(4)=1,对任意x1,x2∈(0,+∞),有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)如果f(x+6)>2,求x的取值范围;
(3)若对于任意x∈[1,4]都有f(x)≥m2+m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把[0,1]内的均匀随机数分别转化为[0,4]和[-4,1]内的均匀随机数,需实施的变换分别为(  )
A.y=-4x,y=5x-4B.y=4x-4,y=4x+3C.y=4x,y=5x-4D.y=4x,y=4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为2的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为$4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且$a=\frac{1}{2}$,a+b+c=sinA+sinB+sinC.
(1)求角A的大小;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x2-8x+m,把f(0),f(1),f(5)按从大到小排序为f(5)>f(0)>f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),则(  )
A.cos<$\overrightarrow{a}$,$\overrightarrow b$>=120°B.$\overrightarrow a$⊥$\overrightarrow b$C.$\overrightarrow{a}$∥$\overrightarrow b$D.|$\overrightarrow a$|=|$\overrightarrow b$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+2tx+{t^2},x≤0\\ x+\frac{1}{x}+t,x>0\end{array}$,若f(0)是f(x)的最小值,则t的取值范围为(  )
A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.分别求下列函数的导数:
(1)y=$\frac{1}{1+\sqrt{x}}$+$\frac{1}{1-\sqrt{x}}$;
(2)y=sin2$\frac{x}{2}$;
(3)y=$\frac{ln(2x+1)}{x}$.

查看答案和解析>>

同步练习册答案