分析 由c2-a2=b,可得c>a,A为锐角,利用同角三角函数基本关系式可求cosA=$\frac{\sqrt{5}}{3}$,利用余弦定理可求$\frac{b+1}{2c}$=$\frac{\sqrt{5}}{3}$,根据两角和的正弦函数公式,同角三角函数基本关系式进而可求tanC=$\frac{sinC}{cosC}$=$\frac{4}{\sqrt{5}}$,从而由正弦定理可得$\frac{b}{c}$=$\frac{2}{tanC}$=$\frac{\sqrt{5}}{2}$,联立即可解得b的值.
解答 解:∵c2-a2=b,可得:c2=a2+b,即c>a,
∴A为锐角,
∵sinA=$\frac{2}{3}$,
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{\sqrt{5}}{3}$,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+b}{2bc}$=$\frac{b+1}{2c}$=$\frac{\sqrt{5}}{3}$,①
∵sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{2}{3}$cosC+$\frac{\sqrt{5}}{3}$sinC=2cosC,
可得:tanC=$\frac{sinC}{cosC}$=$\frac{4}{\sqrt{5}}$,
∴$\frac{b}{c}$=$\frac{sinB}{sinC}$=$\frac{2cosC}{sinC}$=$\frac{2}{tanC}$=$\frac{\sqrt{5}}{2}$,②
由①②可得b=3.
故答案为:3.
点评 本题主要考查了同角三角函数基本关系式,余弦定理,两角和的正弦函数公式,同角三角函数基本关系式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{7}$ | B. | 7 | C. | $\frac{1}{7}$ | D. | -7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2$\sqrt{5}$,-4] | B. | (-2$\sqrt{5}$,-4] | C. | [-2$\sqrt{5}$,-4) | D. | (-2$\sqrt{5}$,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $2\sqrt{2}$ | C. | $2\sqrt{6}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 表示直线 | B. | 表示线段 | C. | 表示圆 | D. | 表示半个圆 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com