精英家教网 > 高中数学 > 题目详情
1.在△ABC三个内角A,B,C所对的边分别为a,b,c,若c2sinA=5sinC,(a+c)2=16+b2,则△ABC的面积是2.

分析 由正弦定理化简已知等式可得ac=5,由余弦定理可求cosB=$\frac{3}{5}$,利用同角三角函数基本关系式解得sinB,进而根据三角形面积公式即可计算得解.

解答 解:∵c2sinA=5sinC,
∴ac2=5c,可得:ac=5,
∵(a+c)2=16+b2,可得:b2=a2+c2+2ac-16,
∴由余弦定理b2=a2+c2-2accosB,可得:2ac-16=-2accosB,整理可得:2ac(1+cosB)=16,
∴cosB=$\frac{3}{5}$,解得sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×5×\frac{4}{5}$=2.
故答案为:2.

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$a={log_{\frac{1}{5}}}\frac{2}{5}$,$b={3^{\frac{3}{5}}}$,$c={4^{\frac{1}{5}}}$,则a,b,c的大小关系是(  )
A.a<c<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上有不共线三点A,B,C,且AB,BC,AC的中点分别为D,E,F,若满足OD,OE,OF的斜率之和为-1,则$\frac{1}{{{k_{AB}}}}+\frac{1}{{{k_{BC}}}}+\frac{1}{{{k_{AC}}}}$=(  )
A.2B.$-\sqrt{3}$C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在二项式(x2-$\frac{1}{x}$)5的展开式中,含x项的系数a是,则${∫}_{a}^{-1}$2xdx=-99.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)满足2x2f(x)+x3f′(x)=ex,f(2)=$\frac{{e}^{2}}{8}$,则x∈[2,+∞)时,f(x)(  )
A.有最大值$\frac{{e}^{2}}{8}$B.有最小值$\frac{{e}^{2}}{8}$C.有最大值$\frac{{e}^{2}}{2}$D.有最小值$\frac{{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知空间几何体CBEADF如图所示,底面AEFD为矩形,平面BEFC⊥平面AEFD,∠CFE=∠BEF=90°,其中AE+BE=AD=2,DF+CF=4.
(1)若AE=1,G为棱CF上靠近点F的三等分点,证明:DG∥平面ABC;
(2)当VE-ABF=$\frac{1}{3}$时,求直线BF与CA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA=$\frac{2}{3}$,sinB=2cosC且c2-a2=b,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在二项式(x+$\frac{1}{2•\root{3}{x}}$)n的展开式中,若前三项系数成等差数列,则展开式中的常数项为(  )
A.$\frac{7}{16}$B.7C.16D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S=$\frac{\sqrt{3}}{4}$(a2+c2-b2).
(Ⅰ)求B;
(Ⅱ)若b=$\sqrt{3}$,求($\sqrt{3}$-1)a+2c的最大值.

查看答案和解析>>

同步练习册答案