分析 先求出二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得展开式中的含x项的系数a的值,再求定积分,可得要求式子的值.
解答 解:二项式(x2-$\frac{1}{x}$)5的展开式的通项公式为Tr+1=${C}_{5}^{r}$•(-1)r•x10-3r,令10-3r=1,可得r=3,
故含x项的系数a=-${C}_{5}^{3}$=-10,则${∫}_{a}^{-1}$2xdx=${∫}_{-10}^{-1}$2xdx=x2${|}_{-10}^{-1}$=1-100=-99,
故答案为:-99.
点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求定积分,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{7}$ | B. | 7 | C. | $\frac{1}{7}$ | D. | -7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com