精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow{a}$=(m,1)与向量$\overrightarrow{b}$=(4,m)共线且方向相同,则m的值为2.

分析 利用向量共线定理即可得出.

解答 解:向量$\overrightarrow{a}$=(m,1)与向量$\overrightarrow{b}$=(4,m)共线,∴m2-4=0,解得m=±2.
经过验证m=-2时方向相反.
因此m=2.
故答案为:2.

点评 本题考查了向量共线定理义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的最大值为(  )
A.$\frac{2\sqrt{7}}{3}$B.$\frac{8}{3}$C.$\frac{2\sqrt{19}}{3}$D.$\frac{2\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$a={log_{\frac{1}{5}}}\frac{2}{5}$,$b={3^{\frac{3}{5}}}$,$c={4^{\frac{1}{5}}}$,则a,b,c的大小关系是(  )
A.a<c<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在[-1,1]上的函数f(x)值域为[-2,0],则y=f(cosx)的值域为[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数y=f(x)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足f(x1)f(x2)=1,则称该函数为“依赖函数”.
(1)判断$y=\frac{1}{x^2}$,y=2x是否为“依赖函数”;
(2)若函数y=a+sinx(a>1),$x∈[-\frac{π}{2},\frac{π}{2}]$为依赖函数,求a的值,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-2\;\;,\;x≤-1,\;\\(x-2)(|x|-1)\;,x>-1.\end{array}\right.$,则f(f(-2))=0,若f(x)≥2,则x的取值范围为x≥3或x=0或x≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$上有不共线三点A,B,C,且AB,BC,AC的中点分别为D,E,F,若满足OD,OE,OF的斜率之和为-1,则$\frac{1}{{{k_{AB}}}}+\frac{1}{{{k_{BC}}}}+\frac{1}{{{k_{AC}}}}$=(  )
A.2B.$-\sqrt{3}$C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在二项式(x2-$\frac{1}{x}$)5的展开式中,含x项的系数a是,则${∫}_{a}^{-1}$2xdx=-99.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在二项式(x+$\frac{1}{2•\root{3}{x}}$)n的展开式中,若前三项系数成等差数列,则展开式中的常数项为(  )
A.$\frac{7}{16}$B.7C.16D.28

查看答案和解析>>

同步练习册答案