精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
2
ax2
+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x0,y0)为AB的中点,记AB两点连线斜率为K,证明:f′(x0)≠K.
(1)f(x)的定义域为(0,+∞),
∵f′(x)=
1
x
-ax+b=0

∴b=a-1,∴f′(x)=
1
x
-ax+a-1=-
(ax+1)(x-1)
x

当f′(x)>0时,得-
(ax+1)(x-1)
x
>0

∵x>0,a>0,解得0<x<1,
当f′(x)<0时,得-
(ax+1)(x-1)
x
<0
,∵x>0,a>0,解得x>1,
;∴当f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;

(2)因A、B在f(x)=lnx-
1
2
ax2+bx(a>0)
的图象上,
y1=lnx1-
1
2
ax12+(a-1)x1y2=lnx2-
1
2
ax22+(a-1)x2

K=
y2-y2
x2-x1
=
lnx2-lnx1
x2-x1
-
1
2
a(x2+x2)+a-1

x0=
x2+x1
2
,f′(x)=
1
x
-ax+a-1

f′(x0)=
2
x2+x2
-a•
x2+x2
2
+a-1

假设k=f′(x0),则得:
lnx2-lnx1
x2-x1
-
1
2
a(x2+x2)+a-1=
2
x2+x2
-a•
x2+x2
2
+a-1

lnx2-lnx1
x2-x1
=
2
x1+x2

ln
x1
x2
=
2
x1
x2
-2
x1
x2
+1
,令t=
x1
x2
,u(t)=lnt-
2t-2
t+1
(0<t<1)

u′(t)=
(t-1)2
t(t+1)2
>0

∴u(t)在(0,1)上是增函数,∴u(t)<u(1)=0,
lnt-
2t-2
t+1
<0
,所以假设k=f′(x0)不成立,
故f′(x0)≠k.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案