精英家教网 > 高中数学 > 题目详情
(2012•盐城三模)在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图1).将△ABD沿着AD折起到△AB'D的位置,连接B'C(如图2).

(1)若平面AB'D⊥平面AD C,求三棱锥B'-AD C的体积;
(2)记线段B'C的中点为H,平面B'ED与平面HFD的交线为l,求证:HF∥l;
(3)求证:AD⊥B'E.
分析:(1)要求三棱锥的体积,关键要确定高与底面,由于平面AB'D⊥平面AD C,则可让△ADC为底,B'到面ADC的距离为高,即要找到过B'点的AD的垂线即可;
(2)此问是要证明线线平行,又知l为平面B'ED与平面HFD的交线,故可证HF∥面B'ED,再用线面平行的性质定理即得证;
(3)要证AD⊥B'E,可用线面垂直的性质定理,即让AD垂直于B'E所在的其中一个平面即可.
解答:解:(1)在直角△ABC中,D为BC的中点,所以AD=BD=CD.
又∠B=60°,所以△ABD是等边三角形.取AD中点O,连接B'O,∴B'O⊥AD.
∵面AB'D⊥面ADC,面AB'D∩面ADC=AD,B'O?面AB'D,
∴B'O⊥面ADC.
在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为BC的中点,
∴AC=
3
,B'O=
3
2
,∴S△ADC=
1
2
×
1
2
×1×
3
=
3
4

∴三棱锥B'-ADC的体积为V=
1
3
×S△ADC×B′O=
1
8

(2)∵H为B'C的中点,F为CE的中点,∴HF∥B'E,
又HF?面B'ED,B'E?面B'ED,∴HF∥面B'ED,
∵HF?面HFD,面B'ED∩面HFD=l,∴HF∥l.
(3)由(1)知,B'O⊥AD.∵AE=
3
3
AO=
1
2
,∠DAC=30°,
EO=
AE2+AO2-2AE•AOcos30°
=
3
6

∴AO2+EO2=AE2,∴AD⊥EO
又B'O?面B'EO,EO?面B'EO,B'O∩EO=O,∴AD⊥面B'EO,
又B'E?面B'EO,
∴AD⊥B'E.
点评:本题考查的是立体几何的平行与垂直的关系和空间体的体积;立体几何的平行与垂直的问题是高考的常考必考内容,除了要掌握与平行垂直相关的结论外,理科生还要注意掌握用空间向量的方法解决立体几何中的平行、垂直、空间角的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城三模)一个袋中装有大小和质地都相同的10个球,其中黑球4个,白球5个,红球1个.
(1)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的概率分布和数学期望E(X);
(2)每次从袋中随机地摸出一球,记下颜色后放回.求3次摸球后,摸到黑球的次数大于摸到白球的次数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)已知正△ABC的边长为1,
CP
=7
CA
+3
CB
,则
CP
AB
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)在平面直角坐标系xOy中,过点A(-2,-1)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,短轴端点为B1、B2
FB1
FB2
=2b2

(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ•AR=3OP2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)选修4-1:几何证明选讲:
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,
AE
=
AC
,DE交AB于点F.求证:PF•PO=PA•PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城三模)选修4-5:不等式选讲:
解不等式:|x-1|>
2x

查看答案和解析>>

同步练习册答案