精英家教网 > 高中数学 > 题目详情
打一口深21米的井,打到第一米深处时需要40分钟,从第一米深处打到第二米深处需要50分钟,以后每深一米都要比前一米多10分钟,则打到最后一米深处要用
 
小时.
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:先将实际问题转化为等差数列问题,利用等差数列的通项公式求出打到最后一米深处要用的时间.
解答: 解:据题意:每打一米井所需的时间构成一等差数列,记作{an},
a1=
2
3
,公差d=
1
6
,项数n=21,
a21=
2
3
+(21-1)×
1
6
=4

∴打到最后一米深处要用4小时.
故答案为:4.
点评:本题考查利用等差数列的问题解决实际问题,关键是将实际问题转化为数列问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表.
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(1)由以上统计数据求下面2乘2列联表中的b,c的值,并问是否有99%的把握认为“月收入以55百元为分界点对“楼市限购令”的态度有差异;
月收入低于55百元的人数 月收入不低于55百元的人数 合计
赞成 a=29       b 32
不赞成        c       d=7
合计  50
(2)若对在[15,25),[25,35)的被调查中各随机选取一人进行追踪调查,记选中的2人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位上升1米后,水面宽
 
米.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图伪代码中,若输入x的值为-4,则输出y的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点(a+1,a-1)在圆x2+y2-2ay-4=0的内部,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-2x,等比数列{an}的前n项和为Sn,f(x)的图象经过点(n,Sn),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=cos(2x-
π
3
)+cos(2x+
π
6
)有下列命题:
①y=f(x)的最大值为
2

②y=f(x)的一条对称轴方程是x=
π
24

③y=f(x)在区间(
π
24
13π
24
)上单调递减;
④将函数y=
2
cos2x的图象向左平移
24
个单位后,与已知函数的图象重合.
其中正确命题的序号是
 
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列4个命题:
①函数f(x)=lg(
cosx-1
+
1-cosx
+1)既是奇函数又是偶函数;
②函数f(x)=4sin(2x+
π
3
)(x∈R),图象关于点(-
π
6
,0)对称,也关于直线x=
π
6
对称;
③若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=-1;
④已知
sinα
sinβ
=p,
cosα
cosβ
=q,且p≠±1,q≠0,则tanαtanβ=
p(q2-1)
q(p2-1)

其中假命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

公比为2的等比数列{an}的各项都是正数,且a3a11=16,则log2a1=(  )
A、4B、-4C、2D、-2

查看答案和解析>>

同步练习册答案