精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面ABCD,点EBC上,

1)求证:平面平面PAC

2)若直线PE与平面PAC所成的角的正弦值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

1)以A为原点,ABADAP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能证明平面PED⊥平面PAC

2)求出平面PAC的一个法向量和平面PCD的一个法向量,利用向量法能求出二面角APCD的余弦值.

证明:(1)∵平面PAB⊥平面ABCD

平面PAB∩平面ABCDABPAAB

PA⊥平面ABCD

ABAD,∴以A为原点,ABADAP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,

A000),D020),E210),C240),设P00λ),λ0

240),00,﹣2),2,﹣10),

44+000

DEACDEAP

ACAPA,∴DE⊥平面PAC

DE平面PED,∴平面PED⊥平面PAC

解:(2)由(1)知平面PAC的一个法向量为

2,﹣10),

∵直线PE与平面PAC所成的角的正弦值为

21,﹣λ),

|cos|||

解得λ=±2

λ0,∴λ2,即P002),

设平面PCD的一个法向量为xyz),

220),0,﹣22),

,取x1,得1,﹣1,﹣1),

cos

∵二面角APCD的平面角是锐角,

∴二面角APCD的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间;

(2)若为整数,且当时, 恒成立,其中的导函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别为椭圆C的左右焦点,椭圆的离心率为,点在椭圆C上,不在轴上的动点P与动点Q关于原点O对称,且四边形的周长为.

1)求动点P的轨迹方程;

2)在动点P的轨迹上有两个不同的点MN,线段MN的中点为G,已知点在圆上,求的最大值,并判断此时ΔOMN的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数在区间上零点的个数;

2)函数在区间上的极值点从小到大分别为,证明:

(Ⅰ)

(Ⅱ)对一切成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两种理财产品,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

投资结果

获利

不赔不赚

亏损

概率

产品

投资结果

获利

不赔不赚

亏损

概率

注:

1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;

2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exlnx+axaR).

1)当a=﹣e+1时,求函数fx)的单调区间;

2)当a≥﹣1时,求证:fx)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:

甲抽取的样本数据

编号

2

7

12

17

22

27

32

37

42

47

性别











投篮成

90

60

75

80

83

85

75

80

70

60

乙抽取的样本数据

编号

1

8

10

20

23

28

33

35

43

48

性别











投篮成

95

85

85

70

70

80

60

65

70

60

)在乙抽取的样本中任取3人,记投篮优秀的学生人数为,求的分布列和数学期望.

)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?


优秀

非优秀

合计









合计



10

)判断甲、乙各用何种抽样方法,并根据()的结论判断哪种抽样方法更优?说明理由.

下面的临界值表供参考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:):男生成绩在175以上(包括175)定义为“合格”,成绩在175以下(不包括175)定义为“不合格”.女生成绩在165以上(包括165)定义为“合格”,成绩在165以下(不包括165)定义为“不合格”.

(1)求五年一班的女生立定跳远成绩的中位数;

(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;

(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用表示其中男生的人数,写出的分布列,并求的数学期望.

查看答案和解析>>

同步练习册答案