精英家教网 > 高中数学 > 题目详情

【题目】春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:

做不到“光盘”

能做到“光盘”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:
参照附表,得到的正确结论是(
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”

【答案】C
【解析】解:由2×2列联表得到a=45,b=10,c=30,d=15.
则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
代入
得k2的观测值k=
因为2.706<3.030<3.841.
所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知y=ax2+bx(a<0)通过点(1,2),且其图象与y=﹣x2+2x的图象有二个交点(如图所示).

(1)求y=ax2+bx与y=﹣x2+2x所围成的面积S与a的函数关系;
(2)当a,b为何值时,S取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是线段的中点.

(1)求异面直线所成角的大小;

(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,如果存在区间),同时满足:

内是单调函数;②当定义域是时, 的值域也是

则称函数是区间上的“保值函数”.

(1)求证:函数不是定义域上的“保值函数”;

(2)已知)是区间上的“保值函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+2)(x﹣1)>0的解集为(
A.{x|x<﹣2或x>1}
B.{x|﹣2<x<1}
C.{x|x<﹣1或x>2}
D.{x|﹣1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.

A.选修4—1:几何证明选讲

如图,△ABC的顶点AC在圆O上,B在圆外,线段AB与圆O交于点M

(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;

(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN

B.选修4—2:矩阵与变换

ab∈R.若直线laxy-7=0在矩阵A= 对应的变换作用下,得到的直线为l:9xy-91=0.求实数ab的值.

C.选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,直线l (t为参数),与曲线C (k为参数)交于AB两点,求线段AB的长.

D.选修4—5:不等式选讲

ab,求证:a4+6a2b2b4>4ab(a2b2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知 a>0 且 a≠1,若函数f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)讨论不等式f(x)≥g(x)成立时x的取值范围.

查看答案和解析>>

同步练习册答案