精英家教网 > 高中数学 > 题目详情
5.函数g(x)=log2x(x>$\frac{1}{2}$)关于x的方程|g(x)|2+m|g(x)|+2m+3=0恰有三个不同的实数解,则实数m的取值范围为(  )
A.(-∞,4-2$\sqrt{7}$)∪(4+2$\sqrt{7}$,+∞)B.(4-2$\sqrt{7}$,4+2$\sqrt{7}$)C.(-$\frac{3}{2}$,-$\frac{4}{3}$)D.(-$\frac{3}{2}$,-$\frac{4}{3}$]

分析 由题意|g(x)|2+m|g(x)|+2m+3=0在x>$\frac{1}{2}$内有三个不同实数解可化为t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;从而分别讨论即可.

解答 ∵g(x)=log2x在x>$\frac{1}{2}$上单调递增,
∴g(x)>-1,令t=|g(x)|
故|g(x)|2+m|g(x)|+2m+3=0在x>$\frac{1}{2}$内有三个不同实数解可化为
t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;
当若在(0,1),{0}上,则2m+3=0,则m=-$\frac{3}{2}$;
故t=0或t=$\frac{3}{2}$>1,
不成立;
若在(0,1),{1}上,
则1+m+2m+3=0,
故m=-$\frac{4}{3}$;
故t2+mt+2m+3=0的解为t=$\frac{1}{3}$或t=1,成立;
若在(0,1),(1,+∞)上,
则△=m2-4(2m+3)>0,
f(1)=2m+3+m+1<0;
f(0)=2m+3>0,
解得-$\frac{3}{2}$<m<-$\frac{4}{3}$;
故答案为:(-$\frac{3}{2}$,-$\frac{4}{3}$];
故答案为D

点评 本题考查了函数的零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设f(x)=e|x|,则${∫}_{-4}^{2}$f(x)dx=e4+e2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标 是(-1,2)
(1)求点B的坐标;
(2)求过点A,O,B的抛物线的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.直线y=x+b与双曲线2x2-y2=1相交于A,B两点,若以AB为直径的圆过原点,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$是R上的增函数,则实数a的取值范围为 (  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若对于任意实数x∈[e,e2],不等式$\frac{{e}^{m}}{2}$>x-$\frac{{e}^{2}}{lnx}$恒成立,则实数的取值范围是 (  )
A.(-∞,-2)B.(-∞,2)C.($\frac{1}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x+xy+y)5的展开式中,x4y3的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.运用换底公式推导下列结论.
(1)log${\;}_{{a}^{m}}$bn=$\frac{n}{m}$logab;
(2)logab=$\frac{1}{lo{g}_{b}a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x),且f(x)在[0,+∞)上单调递减,则不等式f(lnx)<f(1)的解集是{x|x>e或0<x<$\frac{1}{e}$}.

查看答案和解析>>

同步练习册答案