分析 (1)作AC⊥x轴于C,BD⊥x轴于D,由相似三角形的判定可得,△AOC∽△OBD,再由性质,即可得到B的坐标;
(2)设抛物线的解析式为y=ax2+bx,代入A,B的坐标,解方程即可得到a,b,进而得到抛物线的解析式.
解答
解:(1)作AC⊥x轴于C,BD⊥x轴于D,
∵∠ACO=∠AOB=∠ODB=90°,
∴∠OAC=∠BOD=90°-∠AOC,
∴△AOC∽△OBD,
∴$\frac{BD}{OC}=\frac{OD}{AC}=\frac{OB}{OA}=2$,
∵OC=1,AC=2,
∴$\frac{BD}{1}$=$\frac{OD}{2}$=2
∴OD=4,BD=2,
∴点B的坐标是(4,2);
(2)∵抛物线经过原点O(0,0),
∴设抛物线的解析式为y=ax2+bx,
把A、B两点的坐标代入上式得:$\left\{\begin{array}{l}a-b=2\\ 16a+4b=2\end{array}\right.$,
解得:$a=\frac{1}{2},b=-\frac{3}{2}$,
所以抛物线的解析式为y=$\frac{1}{2}$x2-$\frac{3}{2}$x.
点评 本题考查相似三角形的判定和性质,以及待定系数法求抛物线的解析式的方法,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2-$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4-2$\sqrt{7}$)∪(4+2$\sqrt{7}$,+∞) | B. | (4-2$\sqrt{7}$,4+2$\sqrt{7}$) | C. | (-$\frac{3}{2}$,-$\frac{4}{3}$) | D. | (-$\frac{3}{2}$,-$\frac{4}{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com