| A. | (1,+∞) | B. | (1,8) | C. | (4,8) | D. | [4,8) |
分析 若函数f(x)=$\left\{\begin{array}{l}{a}^{x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$是R上的增函数,则$\left\{\begin{array}{l}a>1\\ 4-\frac{a}{2}>0\\ a≥4-\frac{a}{2}+2\end{array}\right.$,解得实数a的取值范围
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{a}^{x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$是R上的增函数,
∴$\left\{\begin{array}{l}a>1\\ 4-\frac{a}{2}>0\\ a≥4-\frac{a}{2}+2\end{array}\right.$,
解得:a∈[4,8),
故选:D.
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2-$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4-2$\sqrt{7}$)∪(4+2$\sqrt{7}$,+∞) | B. | (4-2$\sqrt{7}$,4+2$\sqrt{7}$) | C. | (-$\frac{3}{2}$,-$\frac{4}{3}$) | D. | (-$\frac{3}{2}$,-$\frac{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com