精英家教网 > 高中数学 > 题目详情
12.如图所示:已知直角梯形ABCO中,∠ABC=∠BCO=90°,AB=1,BC=$\sqrt{3}$,OA=OC=2,设$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$(其中0<m,n<1)G为线段MN的中点.
(1)当m=$\frac{1}{2}$时,若O,G,B三点共线,求n的值;
(2)若△OMN的面积为$\frac{\sqrt{3}}{2}$,求|$\overrightarrow{OG}$|的最小值.

分析 (1)以O为坐标原点,OC所在直线为x轴,建立直角坐标系,求得A,B,C,M,N,G的坐标,再由向量共线的坐标表示,计算可得n的值;
(2)求得M,N,G的坐标,由三角形的面积公式,计算可得mn=$\frac{1}{2}$,计算OG的模,由配方,即可得到最小值.

解答 解:(1)以O为坐标原点,OC所在直线为x轴,
建立直角坐标系,可得O(0,0),A(1,$\sqrt{3}$),B(2,$\sqrt{3}$),
C(2,0),M($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),N(2n,0),G(n+$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$),
由O,G,B三点共线,可得$\overrightarrow{OG}$∥$\overrightarrow{OB}$,
即有$\frac{\sqrt{3}}{4}$×2=$\sqrt{3}$(n+$\frac{1}{4}$),
解得n=$\frac{1}{4}$;
(2)由$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$,可得M(m,$\sqrt{3}$m),N(2n,0),
可得G(n+$\frac{1}{2}$m,$\frac{\sqrt{3}}{2}$m),
由△OMN的面积为$\frac{\sqrt{3}}{2}$,可得$\frac{1}{2}$×2n×$\sqrt{3}$m=$\frac{\sqrt{3}}{2}$,
即有mn=$\frac{1}{2}$,
则|$\overrightarrow{OG}$|=$\sqrt{(n+\frac{1}{2}m)^{2}+\frac{3}{4}{m}^{2}}$=$\sqrt{{n}^{2}+{m}^{2}+mn}$
=$\sqrt{(m-n)^{2}+3mn}$=$\sqrt{(m-n)^{2}+\frac{3}{2}}$,
当m=n=$\frac{\sqrt{2}}{2}$时,|$\overrightarrow{OG}$|取得最小值,且为$\frac{\sqrt{6}}{2}$.

点评 本题考查向量的坐标运算,考查向量共线的坐标表示,向量的模的最值,考查三角形的面积公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.由命题“?x∈R,使x2+mx+1<0”是假命题,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A是圆C:x2+y2+ax+4y+30=0上任意一点,A关于直线x+2y-1=0的对称点也在圆C上,则实数a的值(  )
A.10B.-10C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$是R上的增函数,则实数a的取值范围为 (  )
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+2-x,判断f(x)在[0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x+xy+y)5的展开式中,x4y3的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若0<a<b<1,则下列不等式成立的是(  )
A.aa<bbB.aa>bbC.ab<baD.ab>ba

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知xy=m(x>0,y>0,m≠1),且logmy=a,则logmx=1-a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为$\frac{2π}{3}$.
(1)求ω的值;
(2)求函数在x∈[0,$\frac{π}{4}$]上的最值,并指出此时的x的值;
(3)求函数在x∈[0,$\frac{π}{4}$]上的单调减区间.

查看答案和解析>>

同步练习册答案