精英家教网 > 高中数学 > 题目详情
函数f(x)=
4-x2
-
x2-4
的定义域是(  )
A.[-2,2]B.{-2,2}C.(-2,2)D.{0}
由4-x2≥0且x2-4≥0,得x2=4,解得x=±2.∴函数的定义域为{-2,2}.
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
请观察表中y值随x值变化的特点,完成下列问题:
(1)若x1x2=4,则f(x1
=
=
f(x2)(请填写“>,=,<”号);若函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减,则在区间
(2,+∞)
(2,+∞)
上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
,(x>0)的最小值为
4
4

(3)试用定义证明f(x)=x+
4
x
,在区间(0,2)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x+sinx
x

(Ⅰ) 判断f(x)在区间(0,π)上的增减性并证明之;
(Ⅱ) 若不等式0≤a≤
x-3
+
4-x
对x∈[3,4]恒成立,求实数a的取值范围M;
(Ⅲ)设0≤x≤π,且a∈M,求证:(2a-1)sinx+(1-a)sin(1-a)x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,使得|f(x)|≤M成立,则称f(x) 是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)当p=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)若q∈(0,
2
2
]
,函数g(x)在[0,1]上的上界是H(q),求H(q)的取值范围;
(Ⅲ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州二模)已知函数f(x)=
(x+1)4+(x-1)4(x+1)4-(x-1)4
(x≠0).
(Ⅰ)若f(x)=x且x∈R,则称x为f(x)的实不动点,求f(x)的实不动点;
(Ⅱ)在数列{an}中,a1=2,an+1=f(an)(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的减函数f(x),其图象过点M(-3,1)和N(1,-1),则满足|f(x+1)|<1的x的取值范围是(  )
A、-1<x<1B、-4<x<0C、x<-1或x>1D、x<-4或x>0

查看答案和解析>>

同步练习册答案