精英家教网 > 高中数学 > 题目详情
已知一列非零向量,n∈N*,满足:=(10,-5),,(n32 ).,其中k是非零常数.
(1)求数列{||}是的通项公式;
(2)求向量的夹角;(n≥2);
(3)当k=时,把,…,,…中所有与共线的向量按原来的顺序排成一列,记为,…,,…,令,O为坐标原点,求点列{Bn}的极限点B的坐标.(注:若点坐标为(tn,sn),且,则称点B(t,s)为点列的极限点.)
【答案】分析:(1)由题意得出=|k|,从而{||}是首项为5公比为|k|的等比数列.利用等比数列的通项公式即可求得
数列{||}是的通项公式;
(2)由向量的数量积公式得:=k(xn-1-yn-1,xn-1+yn-1)•(xn-1,yn-1)=k(xn-12+yn-12)=
从而求得cos<>下面分两种情形:当k>0时,当k<0时,求得向量的夹角即可;
(3)当k=时,由(2)知:4<>=p,由于每相隔3个向量的两个向量必共线,且方向相反,得到与向量共线的向量,记的单位向量为,利用条件求得,最后利用等比数列的求和公式结合数列的极限即可求得点列{Bn}的极限点B的坐标.
解答:解:(1)(2分)
=|k|=|k|||,(n≥2),
=|k|≠0,||=5
∴{||}是首项为5公比为|k|的等比数列.
=5|k|)n-1(2分)
(2)=k(xn-1-yn-1,xn-1+yn-1)•(xn-1,yn-1
=k(xn-12+yn-12)=
∴cos<>==,(2分)
∴当k>0时,<>=
当k<0时,<>=.(2分)
(3)当k=时,由(2)知:4<>=p,
∴每相隔3个向量的两个向量必共线,且方向相反,
∴与向量共线的向量为:{,}
={},(2分)
的单位向量为,则
=||=|a1|(|k|)n-1
==|a1|(|k|)4n-4(-1)n-1
=(-4|k|4n-1=(10,-5)(-n-1(2分)

则tn=10[]=

∴点列{Bn}的极限点B的坐标为(8,-4).(2分)
点评:本小题主要考查等比数列的通项公式、数量积表示两个向量的夹角、数列的极限等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一列非零向量
an
,n∈N*,满足:
a1
=(10,-5),
an
=(xnyn)=k(xn-1-yn-1xn-1+yn-1)
,(n32 ).,其中k是非零常数.
(1)求数列{|
an
|}是的通项公式;
(2)求向量
an-1
an
的夹角;(n≥2);
(3)当k=
1
2
时,把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成一列,记为
b1
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O为坐标原点,求点列{Bn}的极限点B的坐标.(注:若点坐标为(tn,sn),且
lim
n→∞
tn=t
lim
n→∞
sn=s
,则称点B(t,s)为点列的极限点.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一列非零向
an
满足:
a1
=(x1y1),
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)证明:{|
an
|}
是等比数列;
(Ⅱ)求向量
a
n-1
a
n
的夹角(n≥2)

(Ⅲ)设
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成
一列,记为
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
为坐标原点,求点列{Bn}的极限点B的坐标.
(注:若点Bn坐标为(tnsn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,则称点B(t,s)为点列{Bn}
的极限点.)

查看答案和解析>>

科目:高中数学 来源:潍坊模拟 题型:解答题

已知一列非零向
an
满足:
a1
=(x1y1),
an
=(xnyn)=
1
2
(xn-1-yn-1xn-1+yn-1)(n≥2)

(Ⅰ)证明:{|
an
|}
是等比数列;
(Ⅱ)求向量
a
n-1
a
n
的夹角(n≥2)

(Ⅲ)设
a
1
=(1,2),把
a1
a2
,…,
an
,…中所有与
a1
共线的向量按原来的顺序排成
一列,记为
b1
b2
,…,
.
bn
,…,令
OB
n
=
b1
+
b2
+…+
bn
,0
为坐标原点,求点列{Bn}的极限点B的坐标.
(注:若点Bn坐标为(tnsn),且
lim
n→∞
tn=t,
lim
n→∞
sn=s,则称点B(t,s)为点列{Bn}
的极限点.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知一列非零向量a n,n∈N*,满足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常数.

(1)求数列{| a n|}的通项公式;

(2)求向量a n-1a n的夹角(n≥2);

(3)当k=时,把a 1, a 2,…, a n,…中所有与a 1共线的向量按原来的顺序排成一列,记为b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O为坐标原点,求点列{Bn}的极限点B的坐标.〔注:若点坐标为(tn,sn),且tn=t,sn=s,则称点B(t,s)为点列的极限点〕

(文)设函数f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

同步练习册答案