精英家教网 > 高中数学 > 题目详情
设集合M={x∈Z|x2+2x≤0},N={x|x2-2x=0,x∈R},则M∩N=(  )
A、{0}
B、{0,2}
C、{-2,0}
D、{-2,0,2}
考点:交集及其运算
专题:集合
分析:求出M中不等式解集的整数解确定出M,求出N中方程的解确定出N,找出两集合的交集即可.
解答: 解:∵M={x∈Z|x2+2x≤0}={x∈Z|-2≤x≤0}={-2,-1,0},N={x|x2-2x=0,x∈R}={0,2},
∴M∩N={0}.
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,且a≠1,P=loga(a3+1),Q=loga(a2+1),则P,Q的大小关系是(  )
A、P>QB、P=Q
C、P<QD、与a的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈[0,+∞),(log32)x≤1,则下列说法正确的是(  )
A、p是假命题:¬p:?x0∈[0,+∞),(log32)x0>1
B、p是假命题:¬p:?x∈[0,+∞),(log32)x≥1
C、p是真命题:¬p:?x0∈[0,+∞),(log32)x0>1
D、p是假命题:¬p:?x∈[0,+∞),(log32)x≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤5},
(1).设U=R,若B={x|m≤x≤m+3},且(∁UA)∩B=∅,求实数m的取值范围;
(2).若B={x|m+1≤x≤2m-1},且A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x0∈Q,sinx0+cosx0-2 Φ0≤0”的否定是(  )
A、?x0∉Q,sinx0+cosx0-2 Φ0≤0
B、?x0∈Q,sinx0+cosx0-2 Φ0>0
C、?x∈Q,sinx+cosx-2Φ≤0
D、?x∈Q,sinx+cosx-2Φ>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(x+
π
6
)=
1
4
,x∈[
π
2
,π],求sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果集合A={x|1<x<3,x∈R},则集合A∩Z的真子集的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=a、x=b是函数f(x)=lnx+
1
2
x2
-(m+2)x(m∈R)的两个极值点,若
b
a
≥4.
(Ⅰ)求实数m的取值范围;
(Ⅱ)求f(b)-f(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为kx-y+1=0(k∈R),圆C的方程为x2+y2-2x-3=0.
(1)试判断直线与圆C的位置关系,并说明理由.
(2)过点(0,1)作直线l1⊥l,设直线l1与圆C相交于M,N两点,直线l与圆C相交于P,Q两点,则四边形PMQN的面积是否存在最大值和最小值?若存在,请求出,否则说明理由.

查看答案和解析>>

同步练习册答案