精英家教网 > 高中数学 > 题目详情
如图,等腰直角△ABC中,∠ABC=90°,EA⊥平面ABC,FC∥EA,EA=FC=AB=a.
(Ⅰ)求证:AB⊥平面BCF;
(Ⅱ)求二面角A-EB-F的某三角函数值.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定
专题:空间角
分析:(Ⅰ)由已知条件推导出AB⊥BC,AB⊥FC,由此能证明AB⊥平面BCF.
(Ⅱ)取BE的中点G,连接FG,由已知条件推导出∠AGF即为二面角A-EB-F的平面角.利用余弦定理能求出二面角A-EB-F的余弦值.
解答: (Ⅰ)证明:∵∠ABC=90°,∴AB⊥BC,
又∵EA⊥平面ABC,FC∥EA,∴AB⊥FC,
∵BC∩FC=C,
∴AB⊥平面BCF.
(Ⅱ)解:取BE的中点G,连接FG,
∵EA=BA,∴AC⊥EB,
又∵EF=FB=
2
a
,∴FG⊥EB,
∴∠AGF即为二面角A-EB-F的平面角.
在△AGF中,AF=
3
a
,AG=
2
2
a
,FG=
6
2
a

由余弦定理有cos∠AGF=
AG2+FG2-AF2
2AG•FG
=
1
2
a2+
3
2
a2-3a2
2•
2
2
a•
6
2
a
=-
3
3

∴二面角A-EB-F的余弦值是-
3
3
点评:本题考查直线与平面垂直的证明,考查二面角的某三角函数值的求法,解题时要认真审题,合理地化空间问题为平面问题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线
x
a
+
y
b
=1(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则ab的取值范围是(  )
A、(-∞,
1
8
]
B、(0,
1
8
]
C、(0,8]
D、[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的个数为(  )
(1)命题“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0”
(2)函数y=sin(x-
π
2
)在[0,π]上为减函数
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“an+12=anan+2”的充要条件
(4)已知函数f(x)=lgx+
1
lgx
,则函数f(x)的最小值为2.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

交流电的电压E(单位:V)与时间t(单位:s)的关系可用E=220
3
sin(ωt+φ)(ω>0,|φ|<
π
2
)来表示,且它的频率为50,并当t=0时E=110
3
,求:
(1)电压E的解析式;
(2)电压的最大值和第一次获得最大值的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
1
3
x3+3x+
2
3
,求与直线4x-y-2=0平行的该曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=
2an
2+an
(n∈N+),试写出这个数列的前4项,并猜想这个数列的通项公式,并给以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈N,a≠b,且a2-b2=a3-b3,比较a+b,1,
4
3
大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-kx+k+1=0的两根为sinα、cosα,
(1)求k的值;
(2)求
1+sinα+cosα+2sinαcosα
1-sinα-cosα
的值;
(3)求函数y=x2+kx-
k
4
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B为锐角,角A、B、C对边分别为a、b、c,且a、
mb
2
、c成等差数列,a、
b
2
、c成等比数列,则m的取值范围是
 

查看答案和解析>>

同步练习册答案