分析 (1)根据线面垂直的判定定理,容易判断BD⊥平面SAC,所以BD⊥SO,而SO又是等腰三角形底边AC的高,所以SO⊥AC,从而得到SO⊥平面ABCD;
(2)连接OP,求出P到面ABCD的距离为$\frac{\sqrt{3}}{2}$,利用V三棱锥A-PCD=V三棱锥P-ACD,这样即可求出三棱锥A-PCD的体积.
解答
(1)证明:∵底面ABCD是菱形,∴AC⊥BD.
又∵BD⊥SA,SA∩AC=A,∴BD⊥平面SAC.
又∵SO?平面SAC,∴BD⊥SO.
∵SA=SC,AO=OC,∴SO⊥AC.
又∵AC∩BD=O,∴SO⊥平面ABCD.
(2)解:连接OP,
∵SB∥平面APC,SB?平面SBD,平面SBD∩平面APC=OP,∴SB∥OP.
又∵O是BD的中点,∴P是SD的中点.
由题意知△ABD为正三角形.∴OD=1.
由(1)知SO⊥平面ABCD,∴SO⊥OD.
又∵SD=2,∴在Rt△SOD中,SO=$\sqrt{3}$,
∴P到面ABCD的距离为$\frac{\sqrt{3}}{2}$,
∴∴VA-PCD=VP-ACD=$\frac{1}{3}$×($\frac{1}{2}$×2×2sin 120°)×$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$.
点评 考查线面垂直的判定定理,菱形对角线的性质,线面平行的性质定理,以及三角形的面积公式,三棱锥的体积公式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点P(0,0)为曲线C:y=x3的“相似拐点” | |
| B. | 点P(0,0)为曲线C:y=sinx的“相似拐点” | |
| C. | 点P(0,0)为曲线C:y=tanx的“相似拐点” | |
| D. | 点P(1,0)为曲线C:y=lnx的“相似拐点” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com