精英家教网 > 高中数学 > 题目详情
17.如图,四棱锥S-ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.

(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A-PCD的体积.

分析 (1)根据线面垂直的判定定理,容易判断BD⊥平面SAC,所以BD⊥SO,而SO又是等腰三角形底边AC的高,所以SO⊥AC,从而得到SO⊥平面ABCD;
(2)连接OP,求出P到面ABCD的距离为$\frac{\sqrt{3}}{2}$,利用V三棱锥A-PCD=V三棱锥P-ACD,这样即可求出三棱锥A-PCD的体积.

解答 (1)证明:∵底面ABCD是菱形,∴AC⊥BD.
又∵BD⊥SA,SA∩AC=A,∴BD⊥平面SAC.
又∵SO?平面SAC,∴BD⊥SO.
∵SA=SC,AO=OC,∴SO⊥AC.
又∵AC∩BD=O,∴SO⊥平面ABCD.
(2)解:连接OP,
∵SB∥平面APC,SB?平面SBD,平面SBD∩平面APC=OP,∴SB∥OP.
又∵O是BD的中点,∴P是SD的中点.
由题意知△ABD为正三角形.∴OD=1.
由(1)知SO⊥平面ABCD,∴SO⊥OD.
又∵SD=2,∴在Rt△SOD中,SO=$\sqrt{3}$,
∴P到面ABCD的距离为$\frac{\sqrt{3}}{2}$,
∴∴VA-PCD=VP-ACD=$\frac{1}{3}$×($\frac{1}{2}$×2×2sin 120°)×$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$.

点评 考查线面垂直的判定定理,菱形对角线的性质,线面平行的性质定理,以及三角形的面积公式,三棱锥的体积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数y=($\frac{1}{3}$)x,且x∈(-∞,0),则函数的值域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正实数x,y,z满足z=x2-xy+4y2,则当$\frac{z}{xy}$取得最小值时,$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$的最小值为$-\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,已知圆C经过点P($\sqrt{2}$,$\frac{π}{4}$),圆心为直线ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$与极轴的交点.
(1)求圆C的极坐标方程;
(2)求直线θ=$\frac{π}{3}$(ρ∈R)被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,$\overrightarrow{BP}=2\overrightarrow{PA}$,点P的轨迹为曲线C.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 T的极坐标方程为ρ=-4sinθ.
( I)以直线AB的倾斜角α为参数,求曲线C的参数方程;
(Ⅱ)若D为曲线 T上一点,求|PD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,过点A,B作线段AN,BM分别与△ABC所在的平面垂直,且AN=AB=2BM,E,F,P分别是线段NC,AB,MC的中点.
(Ⅰ)求证:EF∥平面MBC;
(Ⅱ)求异面直线AB与ME所成角的余弦值;
(Ⅲ)求四面体PBMF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是一个空间几何体的三视图,则该几何体的体积为(  )
A.12B.24C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线C满足下列两个条件:
(i)存在直线m在点P(x0,y0)处与曲线C相切;
(ii)曲线C在点P附近位于直线m的两侧.则称点P为曲线C的“相似拐点”.
下列命题不正确的是(  )
A.点P(0,0)为曲线C:y=x3的“相似拐点”
B.点P(0,0)为曲线C:y=sinx的“相似拐点”
C.点P(0,0)为曲线C:y=tanx的“相似拐点”
D.点P(1,0)为曲线C:y=lnx的“相似拐点”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2x,g(x)=x2-2kx+$\frac{5}{2}$,若对于任意的s∈[-1,2],都存在t∈[k,2k+1],使得f(s)=g(t)成立,则实数k的取值范围是$[\sqrt{2},+∞)$.

查看答案和解析>>

同步练习册答案