精英家教网 > 高中数学 > 题目详情

【题目】用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2当x=-2时的值.

【答案】325.4.

【解析】试题分析:先把多项式改写为,然后由内到外逐次计算,由于后面的计算用到前面的结果,所以,要认真、仔细,确保中间计算结果的准确性.

试题解析:∵f(x)=x6-5x5+6x4+x3+x2+0.3x+2

=(((((x-5)x+6)x+0)x+1)x+0.3)x+2,

x=-2时,

v0=1,

v1=-2-5=-7,

v2=-7×(-2)+6=20,

v3=20×(-2)+0=-40,

v4=-40×(-2)+1=81,

v5=81×(-2)+0.3=-161.7,

v6=-161.7×(-2)+2=325.4,

∴f(-2)=325.4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若函数为定义域上的单调函数,求实数的取值范围;

(Ⅱ)当时,函数的两个极值点为 ,且.证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】媒体为调查喜欢娱乐节目是否与性格外向有关,随机抽取了400名性格外向的和400名性格内向的居民,抽查结果用等高条形图表示如下图:

(1)填写完整如下列联表;

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.001的前提下认为喜欢娱乐节目与性格外向有关?

参考数据及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,的中点.

(1),求证:

(2),且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前次考试的数学成绩、物理成绩进行分析.下面是该生次考试的成绩.

数学

108

103

137

112

128

120

132

物理

74

71

88

76

84

81

86

(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;

(Ⅱ)已知该生的物理成绩与数学成绩是线性相关的,求物理成绩与数学成绩的回归直线方程

(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

1)写出曲线的直角坐标方程和直线的普通方程;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

分组

频数

频率

5

0.05

0.20

35

25

0.25

15

0.15

合计

100

1.00

(1)求的值及随机抽取一考生恰为优秀生的概率;

(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;

(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在的概率.

查看答案和解析>>

同步练习册答案