精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

1)写出曲线的直角坐标方程和直线的普通方程;

2)若,求的值.

【答案】(1)直角坐标方程为,普通方程为(2) .

【解析】试题分析:(1)本题考察的是极坐标系下的方程和参数方程与平面直角坐标系下的方程的互化,只需记清楚公式,计算时要细心。

本题的解题思路是将参数代入曲线的直角坐标系的方程,得到关于参数的一元二次方程

,再利用直线参数方程中的几何意义和韦达定理,结合题目所给的等量关系,建立关于的方程,即可求出的值.此类题目很容易忽略参数方程中的几何意义,一定要明白参数在参数方程中所在的地位和意义。

试题解析:(1)由

曲线的直角坐标方程为

直线的普通方程为

2)将直线的参数方程代入曲线的直角坐标方程中,

两点对应的参数分别为

则有

,

解之得: 或者(舍去),的值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2当x=-2时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面 平面 分别为的中点.

1)求证: 平面

2)求证:平面 平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:

做不到科学用眼

能做到科学用眼

合计

45

10

55

30

15

45

合计

75

25

100

(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为美化小区环境,某社区针对公民乱扔垃圾的现象进行了罚款处罚,并随机抽取了200人进行调查,得到如下数据:

(1)若乱扔垃圾的人数与罚款金额(单位:元)满足线性回归关系,求回归方程;

(2)由(1)得到的回归方程分析要使乱扔垃圾的人数不超过,罚款金额至少是多少元?

参考公式:两个具有线性关系的变量的一组数据:

其回归方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校计划面向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有65人.在这124名学生中选修社会科学类的男生有22人、女生有40人.

(1)根据以上数据完成下列列联表;

(2)判断能否有99.9%的把握认为科类的选修与性别有关?

附: ,其中

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案