精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

【答案】(1) (2) (3)不存在

【解析】试题分析:

(1)该问切点横坐标已知,则利用切点在曲线上,带入曲线即可得到切点的纵坐标,进行求导并得到在切点处的导函数值即为切线的斜率,有切线的斜率,切线又过切点,利用直线的点斜式即可求的切线的方程,利用点到直线的距离公式结合条件点到切线的距离为即可求的参数的值.

(2)该问为恒成立问题可以考虑分离参数法,即把参数ax进行分离得到,,再利用函数的导函数研究函数在区间的最大值,即可求的a的取值范围.

(3)根据极值的定义,函数在区间有零点且在零点附近的符号不同,求导可得,,求导可以得到的导函数在区间恒为正数,则函数在区间上是单调递增,即可得到函数进而得到恒成立,在区间上没有零点,进而函数没有极值.

试题解析:

1, .

处的切线斜率为1

切线的方程为,即. 3

又切线与点距离为,所以

解之得, 5

2对于任意实数恒成立,

,则为任意实数时, 恒成立; 6

恒成立,即,在上恒成立, 7

, 8

时, ,则上单调递增;

时, ,则上单调递减;

所以当时, 取得最大值, 9

所以的取值范围为.

综上,对于任意实数恒成立的实数的取值范围为. 10

3)依题意,

所以, 2

,,,

上单调增函数,因此上的最小值为

12

所以在上,

上不存在极值. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

1)写出曲线的直角坐标方程和直线的普通方程;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如下表:

甲企业:

乙企业:

(1)已知甲企业的500件零件质量指标值的样本方差,该企业生产的零件质量指标值服从正态分布,其中近似为质量指标值的样本平均数(注:求时,同一组数据用该区间的中点值作代表),近似为样本方差,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率.(精确到0.001)

(2)由以上统计数据完成下面列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”.

附注:

参考数据:

参考公式:

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 )展开式的前三项的二项式系数之和为16,所有项的系数之和为1.

(1)求的值;

(2)展开式中是否存在常数项?若有,求出常数项;若没有,请说明理由;

(3)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

分组

频数

频率

5

0.05

0.20

35

25

0.25

15

0.15

合计

100

1.00

(1)求的值及随机抽取一考生恰为优秀生的概率;

(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;

(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰直角三角形中, 的中点,点上,且,现沿折起到的位置,使,点上,且.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的导函数.

(1)求的极值;

(2)证明:对任意实数,都有恒成立;

(3)若时恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案