精英家教网 > 高中数学 > 题目详情
7.m,n是两条不同的直线,α,β是两个不同的平面,且n?β,则下列正确的是(  )
A.若m∥n,m⊥α,则α⊥βB.若α∥β,m⊥n,则m⊥αC.若α∥β,m?α,则m∥nD.若m∥n,m?α,则α∥β

分析 对四个选项分别进行判断,即可得出结论.

解答 解:对于A,若m∥n,m⊥α,则n⊥α,∵n?β,∴α⊥β,正确;
对于B,若α∥β,m⊥n,则m⊥α,有可能m∥α,不正确;
对于C,若α∥β,m?α,则m∥n或m,n异面,不正确;
对于D,m∥n,m?α,则α∥β或α,β相交,不正确.
故选A.

点评 本题考查空间直线与直线、直线与平面,平面与平面的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直线坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2cosθ,直线l过点A(1,2),且倾斜角为$\frac{π}{4}$.
(1)求直线l的参数方程及圆C的直角坐标方程;
(2)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从5名女同学和4名男同学中选出4人参加演讲比赛,
(1)男、女同学各2名,有多少种不同选法?
(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求经过点A(-3,2),且与$\frac{x^2}{9}+\frac{y^2}{4}=1$有相同焦点的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知过定点M(-3,-3)的直线l与圆x2+y2+4x-21=0交于A、B两点
(1)当弦AB的长最短时,求直线l的方程;
(2)当弦AB的长为4$\sqrt{5}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.三次函数f(x)=$\frac{a}{3}$x3+bx2+cx+d,f'(x)-9x<0的解集为(1,2).
(1)若f'(x)+7a=0有两个相等的实数根,求f'(x)的解析式;
(2)若f(x)在(-∞,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对某电子元件进行寿命追踪调查,情况如下:
寿命(h)100~200200~300300~400400~500500~600
个数2030804030
由此估计这批电子元件的平均使用寿命是150.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在斜△ABC中,角A,B,C所对的边长分别为a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C,且△ABC的面积为1,则a的值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若双曲线的标准方程为$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1,则它的渐近线方程和离心率分别是(  )
A.y=±$\frac{4}{3}$x,e=$\frac{5}{3}$B.y=±$\frac{4}{3}$x,e=$\frac{5}{4}$C.y=±$\frac{3}{4}$x,e=$\frac{5}{3}$D.y=±$\frac{3}{4}$x,e=$\frac{5}{4}$

查看答案和解析>>

同步练习册答案