精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,证明:>0.

【答案】见解析

【解析】(1)f(x)的定义域为(0,+∞),

当λ=0时,f(x)=ln x-x+1.

则f′(x)=-1,令f′(x)=0,解得x=1.

当0<x<1时,f′(x)>0,f(x)在(0,1)上是增函数;

当x>1时,f′(x)<0,f(x)在(1,+∞)上是减函数.

故f(x)在x=1处取得最大值f(1)=0.

(2)证明:由题可得,f′(x)=λln x+-1.

由题设条件,得f′(1)=1,即λ=1.

f(x)=(x+1)ln x-x+1.

由(1)知,ln x-x+1<0(x>0,且x≠1).

当0<x<1时,f(x)=(x+1)ln x-x+1=xln x+(ln x-x+1)<0,

>0.

当x>1时,f(x)=ln x+(xln x-x+1)=ln x-x>0,>0.

综上可知,>0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设,当时,求函数的定义域,判断并证明函数的奇偶性;

(2)是否存在实数,使得函数递减,并且最小值为1,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)设a,b是两个不相等的正数,若,用综合法证明:a+b>4

(2)已知a>b>c,且a+b+c=0,用分析法证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下图所示的几何体中,底面为正方形,平面,且为线段的中点.

(1)证明:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln x-ax(a∈R)(e=2.718 28…是自然对数的底数).

(1)判断f(x)的单调性;

(2)当f(x)<0在(0,+∞)上恒成立时,求a的取值范围;

(3)证明:当x∈(0,+∞)时, (1+x) <e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线平行,且,其中.

(Ⅰ)求的值,并求出函数的单调区间;

(Ⅱ)设函数,对于正实数,若,使得成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:,并得到如下频率分布直方图.

(I)求图中的值,并根据频率分布直方图统计这600名志愿者中年龄在的人数;

(II)在抽取的100名志愿者中按年龄分层抽取5名参加区电视台“文明伴你行”节目录制,再从这5名志愿者中随机抽取2名到现场分享劝导制止行人闯红灯的经历,求至少有1名年龄不低于35岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(3)在(2)中抽取的人中,随机抽取人,求分数在人的概率.

查看答案和解析>>

同步练习册答案