精英家教网 > 高中数学 > 题目详情
如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.
(Ⅰ) 参考解析;(Ⅱ) 60°

试题分析:(Ⅰ)直线与平面平行的判定定理是在平面内找一条直线与该直线平行,由于点M是PA的中点,联想到连结PC与ED它们的交点也是ED的中点,所以可得MN∥AC.从而可得结论.本小题通过已知的中点利用三角形的中位线定理得到平行是解题的突破口.
试题解析:(1)证明:连接PC,交DE与N,连接MN,
在△PAC中,∵M,N分别为两腰PA,PC的中点
∴MN∥AC, (2分)
又AC面MDE,MN?面MDE,
所以AC∥平面MDE.                                        (4分)
(2)以D为空间坐标系的原点,分别以 DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,
则P(0,0,a),B(a,a,0),C(0,2a,0),
所以, (6分)
设平面PAD的单位法向量为,则可取               (7分)
设面PBC的法向量
则有
即:,取=1,
                 (10分)
设平面PAD与平面PBC所成锐二面角的大小为θ,
(Ⅱ)因为求平面PAD与PBC所成锐二面角的大小,如果做出二面角的平面角有一定的困难,可以延长CB与直线DA相交,从而取求解可以.本小题通过建立空间直角坐标系来求解,求出两个平面的法向量,再通过求出法向量的夹角从而得到二面角的大小.
                    (11分)
∴θ=60°,所以平面PAD与平面PBC所成锐二面角的大小为60° (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

(1)求证:∥平面
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,

(Ⅰ)求证:
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列四个命题中正确的是
A.若所成的角相等,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面,给出下列三个结论:①若,则
②若,则; ③若,则
其中正确的个数是  (    )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不同的平面,是一条直线,则下列命题正确的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不重合的直线mn和两个不重合的平面αβ,有下列命题:
①若mnmα,则nα;②若mαnβmn,则αβ;③若mn是两条异面直线,m?αn?βmβnα,则αβ;④若αβαβmn?βnm,则nα;其中正确命题的个数是(  ).
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案