精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3-3x2+1,g(x)=若方程g[f(x)]-a=0(a>0)有6个实数根(互不相同),则实数a的取值范围是______

【答案】

【解析】分析:利用换元法设t=f(x),则g(t)=a分别作出两个函数的图象,根据a的取值确定t的取值范围,利用数形结合进行求解判断即可.

详解:作出函数f(x)和g(x)的图象如图:,由g[f(x)]-a=0(a>0)得g[f(x)]=a,(a>0)设t=f(x),则g(t)=a,(a>0)由y=g(t)的图象知,①当0<a<1时,方程g(t)=a有两个根-4<t1<-3,或-4<t2<-2,由t=f(x)的图象知,当-4<t1<-3时,t=f(x)有0个根,当-4<t2<-2时,t=f(x)有0个根,此时方程g[f(x)]-a=0(a>0)有0个根,②当a=1时,方程g(t)=a有两个根t1=-3,或t2=,由t=f(x)的图象知,当t1=-3时,t=f(x)有0个根,当t2=时,t=f(x)有3个根,此时方程g[f(x)]-a=0(a>0)有3个根,③当1<a<时,方程g(t)=a有两个根0<t1,或<t2<1,由t=f(x)的图象知,当0<t1时,t=f(x)有3个根,当<t2<1时,t=f(x)有3个根,此时方程g[f(x)]-a=0(a>0)有3+3=6个根,当a=由图可得同理只有5解,综合的故若方程g[f(x)]a0a0)有6个实数根(互不相同),则实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)

①每个面都是直角三角形的四面体;

②每个面都是等边三角形的四面体;

③每个面都是全等的直角三角形的四面体;

④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(1)若直线与曲线有公共点,求倾斜角的取值范围;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

(1)时,判断函数上的零点的个数;

(2),是否存在实数,对,有恒成立,若存在,求出的范围:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:对于任意正整数n,当n≥2时,

(1)若,求的值;

(2)若,且数列的各项均为正数.

① 求数列的通项公式;

② 是否存在,且,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,ACBC,且,AC=BC=2DE分别为ABPB中点,PD⊥平面ABCPD=3.

(1)求直线CE与直线PA夹角的余弦值;

(2)求直线PC与平面DEC夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

其中c>0.那么f(x)的零点是________;若f(x)的值域是,则c的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,侧面PAD垂直底面ABCD,∠PAD=∠ABC,设

1)求证:AE垂直BC

2)若直线AB∥平面PCD,且DC2AB,求证:直线PD∥平面ACE

查看答案和解析>>

同步练习册答案