精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,其侧视图是等边三角形,则该几何体的体积等于(  )
A、4
3
B、3
3
C、2
3
D、
3
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:根据已知三视图,我们结合棱锥的结构特征易判断出几何体为四棱锥,结合三视图中标识的数据,我们易求出棱锥的底面面积及棱锥的高,代入棱锥体积公式即可得到答案.
解答: 解:由已知三视图我们可得:几何体为四棱锥,棱锥以俯视图为底面以侧视图高为高
由于侧视图是以2为边长的等边三角形,故h=
3

结合三视图中标识的其它数据,S底面=
1
2
×(1+2)×2=3
故V=
1
3
×S底面×h=
3

故选D.
点评:本题考查的知识点是根据三视图求几何体的体积,其中根据已知三视图,结合简单几何体的结构特征易判断出几何体的形状,和相关的几何量(底面边长,高)是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线x2=4
3
y的准线经过双曲线
y2
m2
-x2=1的一个焦点,则双曲线的离心率为(  )
A、
3
B、
6
2
C、
3
2
4
D、3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

等边三角形ABC的边长为1,BC边上的高是AD,若沿高AD将它折成一个直二面角B-AD-C,则A到BC的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2-2ax+5(a为常数).
(1)如果函数图象的对称轴为x=3,求实数a的值并做出函数的图象;
(2)求此函数在x∈[0,2]上的最小值;
(3)当x∈[0,2]时,此函数恒小于6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
4
+
y2
3
=1
的左焦点作直线交椭圆于A(x1,y1),B(x2,y2)两点,若x1+x2=-1,则|AB|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=-
3
t
y=2
3
+t
(t为参数),曲线C2的极坐标方程为ρ=2,则曲线C2与曲线C1交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2x+3在[0,3]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升) 满足y=mf(x),其中f(x)=
x2
16
+2(0<x≤4)
x+14
2x-2
  (x>4)
,当药剂在水中释放的浓度不低于4(毫克/升) 时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升) 且不高于10(毫克/升)时称为最佳净化.
(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )
A、命题“若p则q”与命题“若¬q则¬p”互为逆否命题
B、命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,p∨q为真
C、若p∨q为假命题,则p、q均为假命题
D、“若am2=bm2”,则a<b的逆命题为真命题

查看答案和解析>>

同步练习册答案