精英家教网 > 高中数学 > 题目详情

【题目】如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数时的图象,且图象的最高点为.赛道的中间部分为长千米的直线跑道,且.赛道的后一部分是以为圆心的一段圆弧.

(1)的值和的大小;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值.

【答案】(1);(2).

【解析】试题分析:

(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值.

试题解析

(1)由条件得.

.

∴曲线段的解析式为.

时,.

,

.

(2)由(1),可知.

又易知当“矩形草坪”的面积最大时,点在弧上,故.

,,“矩形草坪”的面积为

.

,

故当,即时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10 000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9],其频率分布直方图如图所示.

(1)直方图中的a=_____;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义“三角恋写法”为“三个人之间写信,每人给另外两人之一写一封信,且任意两个人不会彼此给对方写信”,若五个人a,b,c,d,e中的每个人都恰给其余四人中的某一个人写了一封信,则不出现“三角恋写法”写法的写信情况的种数为(
A.704
B.864
C.1004
D.1014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ)若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣5|﹣|x﹣2|.
(1)若x∈R,使得f(x)≤m成立,求m的范围;
(2)求不等式x2﹣8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是偶函数.

(1)求的值;

(2)若函数没有零点,求的取值范围;

(3)若函数 的最小值为0,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈[﹣1,0],θ∈[0,2π),二元函数 取最小值时,x=x0 , θ=θ0则(
A.4x00=0
B.4x00<0
C.4x00>0
D.以上均有可能.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案