精英家教网 > 高中数学 > 题目详情
12.过椭圆$\frac{{x}^{2}}{25}$$+\frac{{y}^{2}}{9}$=1的右焦点且倾角为45°的弦AB的长为(  )
A.5B.6C.$\frac{90}{17}$D.7

分析 由题意作图辅助,从而可得点F(4,0),AB的方程为y=x-4;联立方程化简可得34x2-200x+175=0;再利用根与系数的关系及椭圆的第二定义求解即可.

解答 解:作图如右图,由题意知,
a=5,b=3,c=4;
故点F(4,0),AB的方程为y=x-4;
设A(x1,y1),B(x2,y2);
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1}\\{y=x-4}\end{array}\right.$联立消y化简可得,
34x2-200x+175=0;
故x1+x2=$\frac{200}{34}$=$\frac{100}{17}$;
则弦AB的长|AB|=|AF|+|BF|
=$\frac{c}{a}$($\frac{{a}^{2}}{c}$-x1)+$\frac{c}{a}$($\frac{{a}^{2}}{c}$-x2
=$\frac{4}{5}$($\frac{25}{4}$×2-$\frac{100}{17}$)
=$\frac{90}{17}$;
故选:C.

点评 本题考查了直线与椭圆的位置关系应用,同时考查了椭圆的第二定义及根与系数的关系应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某锥体三视图如图,根据图中所标数据,该锥体的各侧面中,面积最大的是(  )
A.3B.2$\sqrt{5}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知地球的半径为R,在南纬α的纬度圈上有A、B两点,若沿纬度圈这两点间的距离为πRcosα,则A、B两点间的球面距离为(π-2α)R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是等比数列,其前n项和为Sn,若a1+a2=-$\frac{1}{4}$,且对任意n∈N*,有Sn、Sn+2、Sn+1成等差数列.
(1)求{an}的通项公式;
(2)设bn=|$\frac{n}{{a}_{n}}$|,Tn=b1+b2+…+bn,且若(n-1)2≤m(Tn-n-1)对于n≥2恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面PDC,E为棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:平面PAD⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,F1,F2分别是椭圆的左、右焦点,直线l过点F2与椭圆交于A、B两点,且△F1AB的周长为4$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)是否存在直线l使△F1AB的面积为$\frac{4}{3}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,椭圆过(2,$\sqrt{2}$)且离心率为$\frac{{\sqrt{2}}}{2}$,
(1)求椭圆的标准方程;
(2)A为椭圆上异于椭圆左右顶点的任意一点,B与A关于原点O对称,直线AF交椭圆于另外一点C,直线BF交椭圆于另外一点D,
①求直线DA与直线DB的斜率之积
②判断直线AD与直线BC的交点M是否在一条直线上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=1-$\frac{cos2x}{\sqrt{2}sin(x-\frac{π}{4})}$,求定义域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为F,右顶点为A,点P在椭圆上,直线AP交y轴于点M,若$\overrightarrow{PF}$=$\sqrt{3}\overrightarrow{MO}$(O为坐标原点),则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}-1$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案