精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数在区间其中a >0,上存在极值,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围.
(1);(2) .

试题分析:(1)由于函数是一个确定的具体的函数,所以它的极值点也是确定的;故我们只须应用导数求出函数的极值点,注意定义域;让极值点属于区间可得到关于a的不等式,从而就可求出实数a的取值范围;(2)显然不等式等价于:因此当时,不等式恒成立其中,所以利用函数的导数求出的最小值即可.
试题解析:(1)因为, x >0,则
时,;当时,
所以在(0,1)上单调递增;在上单调递减,
所以函数处取得极大值.            
因为函数在区间(其中)上存在极值,
所以 解得.               
(2)不等式即为 记
所以  
,则,                      
,    
上单调递增,                          
,从而
上也单调递增, 所以,所以 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

R,函数
(1)若x=2是函数y=f(x)的极值点,求实数a的值;
(2)若函数在区间[0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(m,n∈R)在x=1处取得极大值2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的极值;
(3)设函数g(x)=x2-2ax+a,若对于任意x2∈[-1,1],总存在x1∈R,使得g(x2)≤f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为实数,
(1)求导数
(2)若,求在[-2,2] 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

导数定义中,自变量的增量(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知是函数的一个极值点。⑴求;⑵求函数的单调区间;⑶若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

物体的运动方程是S=10t-t2(S的单位:m;t的单位:s),则物体在t=2s的速度是(  )
A.2m/sB.4m/sC.6m/sD.8m/s

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在定义域内可导,的图象如下右图所示,则导函数可能为(      )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一物体的运动方程为,其中s的单位是米,t的单位是秒,那么物体在4秒末的瞬时速度是(   )
A.8米/秒B.7米/秒C.6米/秒D.5米/秒

查看答案和解析>>

同步练习册答案