精英家教网 > 高中数学 > 题目详情
设函数在定义域内可导,的图象如下右图所示,则导函数可能为(      )
D

试题分析:本题考查函数图象与导函数的关系:函数图象上升,则的图象在轴上方,反之亦然;函数图象下降,则的图象在轴下方.经验证D符合条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在区间其中a >0,上存在极值,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).
(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;
(2)设函数f(x)的导函数为f’(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数上的值域;
(2)若,对恒成立,
求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,( a为常数,e为自然对数的底).
(1)
(2)时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数=,在处取得极值2。
(1)求函数的解析式;
(2)满足什么条件时,区间为函数的单调增区间?
(3)若=图象上的任意一点,直线=的图象切于点,求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线y=kx是曲线y=ex的切线,则实数k的值为(  )(  )
A.
1
e
B.-
1
e
C.-eD.e

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)的图象如图,则f′(xA)与f′(xB)的大小关系是(  )
A.f′(xA)>f′(xBB.f′(xA)<f′(xBC.f′(xA)=f′(xBD.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数图象上两点(其中)的直线的斜率为      

查看答案和解析>>

同步练习册答案