分析 由约束条件作出可行域,数形结合得到最优解联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-2y+2≥0}\\{x≤4}\\{y≥-2}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=4}\\{x-2y+2=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即C(4,3),
化目标函数z=x+y为y=-x+z,
由图可知,当直线y=-x+z过点C(4,3)时,直线在y轴上的截距最大,z有最大值为4+3=7.
故答案为:7.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (0,1) | D. | [1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com