分析 由题意,f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=ex+2sinx|cosx|=0,则ex=-2sinx|cosx|,构造g(x)=ex,h(x)=-2sinx|cosx|,在同一坐标系中作出函数图象,即可得出结论.
解答 解:由题意,f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=ex+2sinx|cosx|=0,则ex=-2sinx|cosx|,
构造g(x)=ex,h(x)=-2sinx|cosx|,在同一坐标系中图象如图所示.![]()
由图象可得函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在区间[-7,0]上的零点个数为5.
故答案为5.
点评 本题考查向量知识的运用,考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com