【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)为了解该种蛋糕的市场需求情况与性別是否有关,随机统计了100人的购买情况,得如下列联表:
男 | 女 | 合计 | |
购买 | 15 | 35 | 50 |
不购买 | 6 | 44 | 50 |
合计 | 21 | 79 | 100 |
问:能否有
的把握认为是否购买蛋糕与性別有关?
附:![]()
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过右焦点
作一条不与坐标轴平行的直线
,若
交椭圆
与
、
两点,点
关于原点
的对称点为
,求
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①已知函数
的定义域为
,则函数
的定义域为
;
②若集合
中只有一个元素,则
;
③函数
在
上是增函数;
④方程
的实根的个数是1.
所有正确命题的序号是______(请将所有正确命题的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了
名男生,
名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过 | 不超过 | |
男 |
|
|
女 |
|
|
(1)能否有
的把握认为该校学生一周参与志愿服务活动时间是否超过
小时与性别有关?
(2)以这
名学生参与志愿服务活动时间超过
小时的频率作为该事件发生的概率,现从该校学生中随机抽查
名学生,试估计这
名学生中一周参与志愿服务活动时间超过
小时的人数.
附:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
、
的定义域均为
,若对任意
,且
,具有
,则称函数
为
上的单调非减函数,给出以下命题:① 若
关于点
和直线
(
)对称,则
为周期函数,且
是
的一个周期;② 若
是周期函数,且关于直线
对称,则
必关于无穷多条直线对称;③ 若
是单调非减函数,且关于无穷多个点中心对称,则
的图象是一条直线;④ 若
是单调非减函数,且关于无穷多条平行于
轴的直线对称,则
是常值函数;以上命题中,所有真命题的序号是_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工程队共有500人,要建造一段6000米的高速公路,工程需要把500人分成两组,甲组的任务是完成一段4000米的软土地带,乙组的任务是完成剩下的2000米的硬土地带,据测算,软、硬土地每米的工程量是30工(工为计量单位)和40工.
(1)若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期;
(2)如何分配两组的人数会使得全队的筑路工期最短?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com