【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
科目:高中数学 来源: 题型:
【题目】现有分别写有1,2,3,4,5的5张卡片.
(1)从中随机抽取2张,求两张卡片上数字和为5的概率;
(2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面ABCD为梯形,AB//CD,
,AB=AD=2CD=2,△ADP为等边三角形.
![]()
(1)当PB长为多少时,平面
平面ABCD?并说明理由;
(2)若二面角
大小为150°,求直线AB与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,侧面
底面ABCD,
,底面ABCD是直角梯形,
![]()
![]()
.
![]()
(1)求证:
平面PBD:
(2)设E为侧棱PC上异于端点的一点,
,试确定
的值,使得二面角E-BD-P的余弦值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的直角坐标为
,直线
与曲线
的交点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出三个命题:①直线上有两点到平面的距离相等,则直线平行平面;②夹在两平行平面间的异面直线段的中点的连线平行于这个平面;③过空间一点必有唯一的平面与两异面直线平行.正确的是( )
A. ②③B. ①②C. ①②③D. ②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com