精英家教网 > 高中数学 > 题目详情
19.如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,已知AC=AB.求证:
(1)AD•AE=AC2
(2)若FG⊥EC,则$\frac{CF}{CG}$-$\frac{CG}{CF}$=$\frac{DE}{AC}$.

分析 (1)利用切线长与割线长的关系及AB=AC 进行证明.
(2)证明△CAE∽△DAC∽△GCF,得比例式,即可证明结论.

解答 证明:(1)∵AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,
∴AB2=AD•AE,
∵AB=AC,∴AD•AE=AC2
(2)由(1)有$\frac{AD}{AC}=\frac{AC}{AE}$,
∵∠EAC=∠DAC,
∴△ADC∽△ACE,
∵FG⊥EC,D,E,G,F四点共圆
∴∠ECA=∠CDA=∠CGF=90°,
∵∠CFG=∠CEA
∴△CAE∽△DAC∽△GCF,
∴$\frac{CG}{CF}=\frac{AD}{AC}$,$\frac{CF}{CG}$=$\frac{AE}{AC}$
∴$\frac{CF}{CG}$-$\frac{CG}{CF}$=$\frac{AE}{AC}$-$\frac{AD}{AC}$=$\frac{DE}{AC}$.

点评 本题考查圆的切线、考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=lnx+$\frac{4f'(2)}{x}$的图象在点 P(2,f(2))处切线的斜率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x+$\frac{8}{m}}$|+|x-2m|(m>0).
(1)求函数f(x)的最小值;
(2)求使得不等式f(1)>10成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.四棱锥P-ABCD,PD⊥平面ABCD,2AD=BC=2a(a>0),$AD∥BC,PD=\sqrt{3}a$,∠DAB=θ
(I)如图1,若θ=60°,AB=2a,Q为PB的中点,求证:DQ⊥PC;
(Ⅱ)如图2,若θ=90°,AB=a,求平面PAD与平面PBC所成二面角的大小.
(若非特殊角,求出所成角余弦即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校在规划课程设置方案的调研中,随机抽取50名文科学生,调查对选做题倾向得下表:
 倾向“平面几何选讲”倾向“坐标系与参数方程”倾向“不等式选讲”合计
男生164626
女生481224
合计20121850
(Ⅰ)从表中三种选题倾向中,选择可直观判断“选题倾向与性别有关系”的两种,作为选题倾向变量的取值,分析有多大的把握认为“所选两种选题倾向与性别有关系”.(只需要做出其中的一种情况)
(Ⅱ)按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.
(ⅰ)分别求出抽取的8人中倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数;
(ⅱ)若从这8人中任选3人,记倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望Eξ.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若AB为定圆O一条弦(非直径),AB=4,点N在线段AB上移动,∠ONF=90°,NF与圆O相交于点F,求NF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=alnx+$\frac{1}{2}$x2-ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:AB为圆O的直径,AB=AC,AC,BC分别交圆O于E,D,连接BE,DF⊥AC于F
(1)证明DF是圆O的切线;
(2)如果BC=6,AB=5,求BE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,使得QC2-QA2=BA•QC.
(1)求证:QA为⊙O的切线;
(2)若AC恰好为∠BAP的平分线,AB=6,AC=12,求QA的长度.

查看答案和解析>>

同步练习册答案