| A. | 2014×2015 | B. | 2015×2016 | C. | 2014×2016 | D. | 2015×2015 |
分析 通过an+1=an+2n可知an-an-1=2(n-1),an-1-an-2=2(n-2),an-2-an-3=2(n-3),…,a2-a1=2,累加计算,进而可得结论.
解答 解:∵an+1=an+2n,
∴an+1-an=2n,
∴an-an-1=2(n-1),
an-1-an-2=2(n-2),
an-2-an-3=2(n-3),
…
a2-a1=2,
累加得:an-a1=2[1+2+3+…+(n-1)]=2•$\frac{n(n-1)}{2}$=n(n-1),
又∵a1=0,
∴an=n(n-1),
∴a2016=2016(2016-1)=2015×2016,
故选:B.
点评 本题考查数列的通项,利用累加法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| z | 0 | 1 | 2 | 3 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com