精英家教网 > 高中数学 > 题目详情
10.已知复数z=$\frac{2}{1-i}$+(1+i)2,则z的共轭复数是(  )
A.1+3iB.1+2iC.1-2iD.1-3i

分析 利用复数的除法与乘法的运算法则化简求解即可.

解答 解:复数z=$\frac{2}{1-i}$+(1+i)2=$\frac{2(1+i)}{(1+i)(1-i)}$+2i=1+i+2i=1+3i.
则z的共轭复数是:1-3i.
故选:D.

点评 本题考查复数的代数形式混合运算,复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=e2x+x2-ax-2.
(1)当a=2时,求函数f(x)的极值;
(2)若g(x)=f(x)-x2+2,且g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+3+…n}$=$\frac{2n}{n+1}$ (n∈N*),由“k递推到k+1”时左端需增加的代数式是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$处取最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,
(1)求函数f(x)的解析式;
(2)设x∈[0,$\frac{π}{2}$],f(x)求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow a$,$\overrightarrow b$不平行,向量λ$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$+2$\overrightarrow b$平行,则实数λ=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为研究“在n次独立重复试验中,事件A恰好发生k次的概率的和”这个课题,我们可以分三步进行研究:(I)取特殊事件进行研究;(Ⅱ)观察分析上述结果得到研究结论;(Ⅲ)试证明你得到的结论.现在,请你完成:
(1)抛掷硬币4次,设P0,P1,P2,P3,P4分别表示正面向上次数为0次,1次,2次,3次,4次的概率,求P0,P1,P2,P3,P4(用分数表示),并求P0+P1+P2+P3+P4;(2)抛掷一颗骰子三次,设P0,P1,P2,P3分别表示向上一面点数是3恰好出现0次,1次,2次,3次的概率,求P0,P1,P2,P3(用分数表示),并求P0+P1+P2+P3
(3)由(1)、(2)写出结论,并对得到的结论给予解释或给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x3-7x2-4x,则不等式f(x)<0的解集是(  )
A.$({-∞,-\frac{1}{2}})∪({0,4})$B.$({-∞,-4})∪({\frac{1}{2},1})$C.$({-\frac{1}{2},0})∪({4,+∞})$D.$({-∞,0})∪({\frac{1}{2},4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题:①y=cos($\frac{2017π}{2}$+x)是偶函数:
②y=tan(x+$\frac{π}{4}$)的一个对称中心是($\frac{π}{4}$,0);
③若α,β是第一象限角,且α<β,则tanα<tanβ,
④cos1<sin1<tan1.
其中所有正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${∫}_{2}^{4}$(ex-$\frac{1}{x}$)dx=e4-e2-ln2.

查看答案和解析>>

同步练习册答案